Development of a Burned Area Processor Based on Sentinel-2 Data Using Deep Learning

被引:1
|
作者
Knopp, Lisa [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
关键词
D O I
10.1007/s41064-021-00177-6
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
引用
收藏
页码:357 / 358
页数:2
相关论文
共 50 条
  • [41] Detecting High-Rise Buildings from Sentinel-2 Data Based on Deep Learning Method
    Li, Liwei
    Zhu, Jinming
    Cheng, Gang
    Zhang, Bing
    REMOTE SENSING, 2021, 13 (20)
  • [42] Development of a Sentinel-2 burned area algorithm: Generation of a small fire database for sub-Saharan Africa
    Roteta, E.
    Bastarrika, A.
    Padilla, M.
    Storm, T.
    Chuvieco, E.
    REMOTE SENSING OF ENVIRONMENT, 2019, 222 : 1 - 17
  • [43] UNSUPERVISED GEOSPATIAL DOMAIN ADAPTATION FOR LARGE-SCALE WILDFIRE BURNED AREA MAPPING USING SENTINEL-2 MSI AND SENTINEL-1 SAR DATA
    Zhang, Puzhao
    Ban, Yifang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5742 - 5745
  • [44] Quantifying Seagrass Density Using Sentinel-2 Data and Machine Learning
    Meister, Martin
    Qu, John J.
    REMOTE SENSING, 2024, 16 (07)
  • [45] Sentinel-2 data classifications for the Baikal natural area
    Avramenko, Yurii, V
    Popova, Anastasia K.
    Fedorov, Roman K.
    27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS, 2021, 11916
  • [46] KappaMask: AI-Based Cloudmask Processor for Sentinel-2
    Domnich, Marharyta
    Suenter, Indrek
    Trofimov, Heido
    Wold, Olga
    Harun, Fariha
    Kostiukhin, Anton
    Jaerveoja, Mihkel
    Veske, Mihkel
    Tamm, Tanel
    Voormansik, Kaupo
    Olesk, Aire
    Boccia, Valentina
    Longepe, Nicolas
    Cadau, Enrico Giuseppe
    REMOTE SENSING, 2021, 13 (20)
  • [47] Deep Learning Model Development for Detecting Coffee Tree Changes Based on Sentinel-2 Imagery in Vietnam
    Quang Toan Le
    Kinh Bac Dang
    Tuan Linh Giang
    Thi Huyen Ai Tong
    Vu Giang Nguyen
    Thi Dieu Linh Nguyen
    Yasir, Muhammad
    IEEE ACCESS, 2022, 10 : 109097 - 109107
  • [48] A Machine Learning Approach for NDVI Forecasting based on Sentinel-2 Data
    Cavalli, Stefano
    Penzotti, Gabriele
    Amoretti, Michele
    Caselli, Stefano
    PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE ON SOFTWARE TECHNOLOGIES (ICSOFT), 2021, : 473 - 480
  • [49] Machine and deep learning-based trophic state classification of national freshwater reservoirs in Taiwan using Sentinel-2 data
    Mukonza, Sabastian Simbarashe
    Chiang, Jie-Lun
    PHYSICS AND CHEMISTRY OF THE EARTH, 2024, 134
  • [50] Assessing the Sentinel-2 Capabilities to Identify Abandoned Crops Using Deep Learning
    Portales-Julia, Enrique
    Campos-Taberner, Manuel
    Garcia-Haro, Francisco Javier
    Gilabert, Maria Amparo
    AGRONOMY-BASEL, 2021, 11 (04):