共 50 条
Covariant mutually unbiased bases
被引:4
|作者:
Carmeli, Claudio
[1
]
Schultz, Jussi
[2
,3
]
Toigo, Alessandro
[2
,4
]
机构:
[1] Univ Genoa, DIME, Via Magliotto 2, I-17100 Savona, Italy
[2] Politecn Milan, Dipartimento Matemat, Piazza Leonardo La Vinci 32, I-20133 Milan, Italy
[3] Univ Turku, Dept Phys & Astron, Turku Ctr Quantum Phys, FI-20014 Turku, Finland
[4] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
关键词:
Mutually unbiased bases;
finite phase-space;
finite Heisenberg group;
finite symplectic group;
FINITE HARMONIC-OSCILLATOR;
QUANTUM-SYSTEMS;
REPRESENTATIONS;
CONSTRUCTION;
DIMENSIONS;
MATRICES;
D O I:
10.1142/S0129055X16500094
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
The connection between maximal sets of mutually unbiased bases (MUBs) in a prime-power dimensional Hilbert space and finite phase-space geometries is well known. In this article, we classify MUBs according to their degree of covariance with respect to the natural symmetries of a finite phase-space, which are the group of its affine symplectic transformations. We prove that there exist maximal sets of MUBs that are covariant with respect to the full group only in odd prime-power dimensional spaces, and in this case, their equivalence class is actually unique. Despite this limitation, we show that in dimension 2(r) covariance can still be achieved by restricting to proper subgroups of the symplectic group, that constitute the finite analogues of the oscillator group. For these subgroups, we explicitly construct the unitary operators yielding the covariance.
引用
收藏
页数:43
相关论文