Bayesian Learning in Sparse Graphical Factor Models via Variational Mean-Field Annealing

被引:0
|
作者
Yoshida, Ryo [1 ]
West, Mike [2 ]
机构
[1] Inst Stat Math, Dept Stat Modeling, Tokyo 1908562, Japan
[2] Duke Univ, Dept Stat Sci, Durham, NC 27708 USA
基金
美国国家卫生研究院; 美国国家科学基金会; 日本科学技术振兴机构;
关键词
annealing; graphical factor models; variational mean-field method; MAP estimation; sparse factor analysis; gene expression profiling; BREAST-CANCER; EXPRESSION; PREDICTION; NETWORKS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a class of sparse latent factor models, called graphical factor models (GFMs), and relevant sparse learning algorithms for posterior mode estimation. Linear, Gaussian GFMs have sparse, orthogonal factor loadings matrices, that, in addition to sparsity of the implied covariance matrices, also induce conditional independence structures via zeros in the implied precision matrices. We describe the models and their use for robust estimation of sparse latent factor structure and data/signal reconstruction. We develop computational algorithms for model exploration and posterior mode search, addressing the hard combinatorial optimization involved in the search over a huge space of potential sparse configurations. A mean-field variational technique coupled with annealing is developed to successively generate "artificial" posterior distributions that, at the limiting temperature in the annealing schedule, define required posterior modes in the GFM parameter space. Several detailed empirical studies and comparisons to related approaches are discussed, including analyses of handwritten digit image and cancer gene expression data.
引用
收藏
页码:1771 / 1798
页数:28
相关论文
共 50 条
  • [41] Finite size mean-field models
    Fannes, M.
    Vandenplas, C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (45): : 13843 - 13860
  • [42] Relativistic mean-field mass models
    D. Peña-Arteaga
    S. Goriely
    N. Chamel
    The European Physical Journal A, 2016, 52
  • [43] On the pressure in mean-field lattice models
    Oversteegen, SM
    Barneveld, PA
    Leermakers, FAM
    Lyklema, J
    LANGMUIR, 1999, 15 (25) : 8609 - 8617
  • [44] Gibbsian description of mean-field models
    Le Ny, Arnaud
    IN AND OUT OF EQUILIBRIUM 2, 2008, 60 : 463 - 480
  • [45] Relativistic mean-field mass models
    Pena-Arteaga, D.
    Goriely, S.
    Chamel, N.
    EUROPEAN PHYSICAL JOURNAL A, 2016, 52 (10):
  • [46] A variational mean-field theory for sigmoidal belief networks
    Bhattacharyya, C
    Keerthi, SS
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 13, 2001, 13 : 374 - 380
  • [47] Mean-field models for disordered crystals
    Cances, Eric
    Lahbabi, Salma
    Lewin, Mathieu
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (02): : 241 - 274
  • [48] Nuclear periphery in mean-field models
    Baran, A
    Mierzynski, P
    INTERNATIONAL JOURNAL OF MODERN PHYSICS E-NUCLEAR PHYSICS, 2004, 13 (01) : 337 - 341
  • [49] Invisible dynamo in mean-field models
    Reshetnyak, M. Yu.
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2016, 42 (07): : 482 - 487
  • [50] Mean-field models and exotic nuclei
    Reinhard, PG
    Bürvenich, T
    Cornelius, T
    Fleischer, P
    Klüpfel, P
    Maruhn, JA
    NUCLEAR PHYSICS A, 2004, 746 : 76C - 82C