New Exact and Explicit Travelling Wave Solutions for the Coupled Higgs Equation and a Nonlinear Variant of the PHI-four Equation

被引:1
|
作者
Khajeh, A. [1 ]
Kabir, M. M. [1 ]
Koma, A. Yousefi [2 ]
机构
[1] Islamic Azad Univ, Dept Engn, Aliabad Katoul Branch, Golestan, Iran
[2] Univ Tehran, Coll Engn, Fac Mech Engn, Adv Dynam & Control Syst Lab, Tehran 14174, Iran
关键词
Coupled Higgs equation; Variant of the PHI-four equation; Periodic solutions; Solitons; Exp-function method; Travelling wave solutions; EXP-FUNCTION METHOD; VARIATIONAL ITERATION METHOD; HOMOTOPY PERTURBATION METHOD; SINE-COSINE METHOD; EVOLUTION-EQUATIONS; PERIODIC-SOLUTIONS; SOLITON-SOLUTIONS; FIELD EQUATION; EXPANSION; FLOW;
D O I
10.1515/IJNSNS.2010.11.9.725
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An analytic study on a complex nonlinear system (Coupled Higgs equation) and a nonlinear variant of the PHI-four equation is presented in this paper The Exp-function method is employed to derive exact periodic and generalized solitary solutions of these equations The solutions are compared with those obtained by the tanh method, the sine-cosine method and the Weierstrass elliptic function method, furthermore, new and more general solutions are found
引用
收藏
页码:725 / 741
页数:17
相关论文
共 50 条
  • [41] Exact Travelling wave Solutions of a Beam Equation
    J. C. Camacho
    M. S. Bruzón
    J. Ramírez
    M. L. Gandarias
    Journal of Nonlinear Mathematical Physics, 2011, 18 : 33 - 49
  • [42] EXACT TRAVELLING WAVE SOLUTIONS OF A BEAM EQUATION
    Camacho, J. C.
    Bruzon, M. S.
    Ramirez, J.
    Gandarias, M. L.
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2011, 18 : 33 - 49
  • [43] EXACT TRAVELLING WAVE SOLUTIONS TO BBM EQUATION
    Zhu Li Jingen Yang College of Math and Information Science Xinyang Normal University Xinyang Henan Jirong Shan Education Bureau of Sishui Sishui Shandong
    Annals of Differential Equations, 2009, 25 (04) : 414 - 419
  • [44] Generalized forms of the phi-four equation with compactons, solitons and periodic solutions
    Wazwaz, AM
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2005, 69 (5-6) : 580 - 588
  • [45] New exact travelling wave solutions to the complex coupled KdV equations and modified KdV equation
    Zhang, Huiqun
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2008, 13 (09) : 1776 - 1781
  • [46] Abundant new travelling wave solutions for the coupled Ito equation
    Feng, Binlu
    Han, Bo
    Dong, Huanhe
    CHAOS SOLITONS & FRACTALS, 2009, 39 (01) : 393 - 398
  • [47] Explicit and exact traveling wave solutions to the nonlinear LC circuit equation
    Shang Ya-Dong
    Huang Yong
    ACTA PHYSICA SINICA, 2013, 62 (07)
  • [48] Exact traveling wave solution of nonlinear variants of the RLW and the PHI-four equations
    Soliman, A. A.
    PHYSICS LETTERS A, 2007, 368 (05) : 383 - 390
  • [49] Dark and new travelling wave solutions to the nonlinear evolution equation
    Baskonus, Haci Mehmet
    Koc, Dilara Altan
    Bulut, Hasan
    OPTIK, 2016, 127 (19): : 8043 - 8055
  • [50] BIFURCATIONS AND EXACT TRAVELLING WAVE SOLUTIONS FOR A NEW INTEGRABLE NONLOCAL EQUATION
    Li, Jibin
    Zhang, Yi
    Liang, Jianli
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2021, 11 (03): : 1588 - 1599