Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media

被引:2
|
作者
Ambrosio, Leonardo Andre [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Metamaterials; Mie scattering; Negative index materials; Lorenz-Mie theory; FOCUSED GAUSSIAN BEAMS; SPHEROIDAL PARTICLE; OPTICAL TWEEZERS; SHAPED BEAMS; BESSEL BEAM; SCATTERING; FORCES; METAMATERIAL; COEFFICIENTS; MOMENTUM;
D O I
10.1016/j.jqsrt.2016.04.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 153
页数:7
相关论文
共 50 条
  • [41] Generalized Lorenz-Mie theories, the third decade: A perspective
    Gouesbet, G.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (14-16): : 1223 - 1238
  • [42] Shaped beam scattering from a single lymphocyte cell by generalized Lorenz-Mie theory
    Wang, Jia Jie
    Han, Lu
    Han, Yi Ping
    Gouesbet, Gerard
    Wu, Xuecheng
    Wu, Yingchun
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2014, 133 : 72 - 80
  • [43] Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres
    Gouesbet, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1999, 16 (07): : 1641 - 1650
  • [44] Particle positioning from CCD images: experiments and comparison with the generalized Lorenz-Mie theory
    Guerrero, JA
    Santoyo, FM
    Moreno, D
    Funes-Gallanzi, M
    Fernandez-Orozco, S
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2000, 11 (05) : 568 - 575
  • [45] On the accuracy of approximate descriptions of discrete superpositions of Bessel beams in the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    da Silva Santos, Carlos Henrique
    Lages Rodrigues, Ivan Eduardo
    2017 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC), 2017,
  • [46] Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres
    Lab. d'Energetique Syst. et Procedes, Université de Rouen, Inst. Natl. des Sci. Appl. de Rouen, B.P. 08, 76131 Mont Saint Aignan Cedex, France
    不详
    J Opt Soc Am A, 7 (1641-1650):
  • [47] Laboratory determination of beam-shape coefficients for use in generalized Lorenz-Mie theory
    Polaert, H
    Gouesbet, G
    Gréhan, G
    APPLIED OPTICS, 2001, 40 (10) : 1699 - 1706
  • [48] COMPUTATIONS OF THE GN COEFFICIENTS IN THE GENERALIZED LORENZ-MIE THEORY USING 3 DIFFERENT METHODS
    GOUESBET, G
    GREHAN, G
    MAHEU, B
    APPLIED OPTICS, 1988, 27 (23): : 4874 - 4883
  • [49] Analytical Descriptions of Finite-Energy Bessel Beams in the Generalized Lorenz-Mie Theory
    Ambrosio, Leonardo Andre
    2018 SBFOTON INTERNATIONAL OPTICS AND PHOTONICS CONFERENCE (SBFOTON IOPC), 2018,
  • [50] LOCALIZED INTERPRETATION TO COMPUTE ALL THE COEFFICIENTS GN(M) IN THE GENERALIZED LORENZ-MIE THEORY
    GOUESBET, G
    GREHAN, G
    MAHEU, B
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1990, 7 (06): : 998 - 1007