Symmetry relations in the generalized Lorenz-Mie theory for lossless negative refractive index media

被引:2
|
作者
Ambrosio, Leonardo Andre [1 ]
机构
[1] Univ Sao Paulo, Sao Carlos Sch Engn, Dept Elect & Comp Engn, 400 Trabalhador Sao Carlense Ave, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Metamaterials; Mie scattering; Negative index materials; Lorenz-Mie theory; FOCUSED GAUSSIAN BEAMS; SPHEROIDAL PARTICLE; OPTICAL TWEEZERS; SHAPED BEAMS; BESSEL BEAM; SCATTERING; FORCES; METAMATERIAL; COEFFICIENTS; MOMENTUM;
D O I
10.1016/j.jqsrt.2016.04.019
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we present a theoretical analysis of the generalized Lorenz-Mie theory for negative refractive index (NRI) media and spherical scatterers, extending the well-known concepts and definitions found in the literature involving dielectric or positive refractive index (PRI) particles. The consequences of a negative phase velocity and an anti parallelism of the wave vector with respect to the Poynting vector are investigated and interpreted in this framework and, together with the symmetries found for the beam shape coefficients when compared to the conventional PRI case, it is shown that the description of plane waves, Gaussian beams and, more generally, on-axis azimuthally symmetric waves along a NRI medium, their fields and all physical properties can be conveniently correlated with that of dielectric media once the electromagnetic response functions are replaced by their corresponding dielectric counterparts. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:147 / 153
页数:7
相关论文
共 50 条
  • [1] Symmetry relations in generalized Lorenz-Mie theory
    Ren, K.F.
    Grehan, G.
    Gouesbet, G.
    Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1994, 11 (06): : 1812 - 1817
  • [2] SYMMETRY-RELATIONS IN GENERALIZED LORENZ-MIE THEORY
    REN, KF
    GREHAN, G
    GOUESBET, G
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (06): : 1812 - 1817
  • [3] Generalized Lorenz-Mie theory and applications
    Lock, James A.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2009, 110 (11): : 800 - 807
  • [4] GENERALIZED LORENZ-MIE THEORY AND APPLICATIONS
    GOUESBET, G
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 1994, 11 (01) : 22 - 34
  • [5] Generalized Lorenz-Mie theory of photonic wheels
    Orlov, S.
    Berskys, J.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2021, 261
  • [6] An approach for a polychromatic generalized Lorenz-Mie theory
    Ambrosio, Leonardo A.
    de Sarro, Jhonas O.
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2024, 312
  • [7] Towards photophoresis with the generalized Lorenz-Mie theory
    Ambrosio, Leonardo Andre
    Wang, Jiajie
    Gouesbet, Gerard
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2022, 288
  • [8] Generalized Lorenz-Mie theory for assemblies of spheres and aggregates
    Gouesbet, G
    Grehan, G
    JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 1999, 1 (06): : 706 - 712
  • [9] Integral localized approximation in generalized Lorenz-Mie theory
    Universite et Inst Natl des Sciences, Appliques de Rouen, Mont-Saint-Aignan, France
    Appl Opt, 19 (4218-4225):
  • [10] Asymptotic quantum elastic generalized Lorenz-Mie theory
    Gouesbet, G.
    OPTICS COMMUNICATIONS, 2006, 266 (02) : 704 - 709