The Dirac operator coupled to 2D quantum gravity

被引:0
|
作者
Bogacz, L [1 ]
机构
[1] Jagiellonian Univ, M Smoluchowski Inst Phys, PL-30059 Krakow, Poland
来源
ACTA PHYSICA POLONICA B | 2003年 / 34卷 / 10期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We implement fermions on 2D dynamical random triangulation and determine the spectrum of the Dirac operator. We study the dependence of the spectrum on the hopping parameter and use finite size analysis to determine critical exponents. The results for regular, for Euclidean and for Lorentzian lattices are briefly presented.
引用
收藏
页码:4739 / 4745
页数:7
相关论文
共 50 条
  • [21] DAMAGING 2D QUANTUM-GRAVITY
    BAILLIE, CF
    JOHNSTON, DA
    PHYSICS LETTERS B, 1994, 326 (1-2) : 51 - 56
  • [22] Measure in the 2D Regge quantum gravity
    Zubkov, MA
    PHYSICS LETTERS B, 2005, 616 (3-4) : 221 - 227
  • [23] The concept of time in 2D quantum gravity
    Ambjorn, J
    Anagnostopoulos, KN
    Jurkiewicz, J
    Kristjansen, CF
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (04):
  • [24] Scaling and quantum geometry in 2d gravity
    Anagnostopoulos, KN
    NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 1999, 73 : 786 - 788
  • [25] LESSONS OF QUANTUM 2D DILATON GRAVITY
    DEALWIS, SP
    MACINTIRE, DA
    PHYSICS LETTERS B, 1995, 344 (1-4) : 110 - 116
  • [26] QUANTUM GROUP SYMMETRY OF 2D GRAVITY
    GERVAIS, JL
    LECTURE NOTES IN MATHEMATICS, 1992, 1510 : 259 - 276
  • [27] Fermions in 2d Lorentzian quantum gravity
    Bogacz, L
    Burda, Z
    Jurkiewicz, J
    ACTA PHYSICA POLONICA B, 2003, 34 (08): : 3987 - 3999
  • [28] Quantum group symmetry of 2d gravity
    Gervais, J.-L.
    Lecture Notes in Mathematics, 1992, 1510
  • [29] The spectral dimension of 2D quantum gravity
    Ambjorn, J
    Nielsen, JL
    Rolf, J
    Boulatov, D
    Watabiki, Y
    JOURNAL OF HIGH ENERGY PHYSICS, 1998, (02): : XIX - 7
  • [30] QUENCHING 2D QUANTUM-GRAVITY
    BAILLIE, CF
    HAWICK, KA
    JOHNSTON, DA
    PHYSICS LETTERS B, 1994, 328 (3-4) : 284 - 290