Single shot real-time high-resolution imaging through dynamic turbid media based on deep learning

被引:10
|
作者
Wu, Huazheng [1 ,2 ]
Meng, Xiangfeng [1 ,2 ]
Yang, Xiulun [1 ,2 ]
Li, Xianye [3 ]
Yin, Yongkai [1 ,2 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China
[2] Shandong Univ, Shandong Prov Key Lab Laser Technol & Applicat, Qingdao 266237, Peoples R China
[3] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen 518060, Peoples R China
基金
中国国家自然科学基金;
关键词
Scattering medium imaging; Random phase encoding; Deep learning; Phase retrieval; SCATTERING MEDIUM; POSITION; CORNERS; LAYERS;
D O I
10.1016/j.optlaseng.2021.106819
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Low signal-to-noise ratio (SNR) measurement is conceivable the primary obstruction to real-time, high-resolution through dynamic turbid media optical imaging. To break this restriction, by individualizing and employing these low SNR measurement data, the spectrum estimation theory is procured a noise model for scatter imaging. The noise model proposed is exploited to synthesize data set training to settle the related problems of noise phase without knowing the experimental scenes. We verify the robustness of the resulting deep correlography method to noise, outdistance the capabilities of the existing Fourier-domain shower-curtain effect (FDSE) system in terms of spatial resolution and total acquisition time, in addition, the targets can be reconstructed from a standard sCMOS detector with a 150 ms exposure.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] HIGH-RESOLUTION IMAGING THROUGH TURBULENT MEDIA
    WANG, CP
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1974, 64 (04) : 561 - 561
  • [22] Accelerating Deep Neural Networks for Real-time Data Selection for High-resolution Imaging Particle Detectors
    Jwa, Yeon-jae
    Di Guglielmo, Giuseppe
    Carloni, Luca P.
    Karagiorgi, Georgia
    2019 NEW YORK SCIENTIFIC DATA SUMMIT (NYSDS), 2019,
  • [23] Real-Time Dynamic SLAM Algorithm Based on Deep Learning
    Su, Peng
    Luo, Suyun
    Huang, Xiaoci
    IEEE ACCESS, 2022, 10 : 87754 - 87766
  • [24] Model Parameter Learning for Real-Time High-Resolution Image Enhancement
    Song, Yuda
    Zhu, Yunfang
    Du, Xin
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 (27) : 1844 - 1848
  • [25] Deep learning for high-resolution seismic imaging
    Ma L.
    Han L.
    Feng Q.
    Scientific Reports, 14 (1)
  • [26] Deep learning for high-resolution seismic imaging
    Ma, Liyun
    Han, Liguo
    Feng, Qiang
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [27] High-resolution imaging in a deep turbid medium based on an ultrasound-switchable fluorescence technique
    Yuan, Baohong
    Uchiyama, Seiichi
    Liu, Yuan
    Nguyen, Kytai T.
    Alexandrakis, George
    APPLIED PHYSICS LETTERS, 2012, 101 (03)
  • [28] Advanced deep learning methodology for accurate, real-time segmentation of high-resolution intravascular ultrasound images
    Bajaj, Retesh
    Huang, Xingru
    Kilic, Yakup
    Ramasamy, Anantharaman
    Jain, Ajay
    Ozkor, Mick
    Tufaro, Vincenzo
    Safi, Hannah
    Erdogan, Emrah
    Serruys, Patrick W.
    Moon, James
    Pugliese, Francesca
    Mathur, Anthony
    Torii, Ryo
    Baumbach, Andreas
    Dijkstra, Jouke
    Zhang, Qianni
    Bourantas, Christos, V
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2021, 339 : 185 - 191
  • [29] Compact optical real-time imaging system for high-resolution SAR data based on autofocusing
    Yang, Chenguang
    Zhang, Yufeng
    Wang, Duo
    Wang, Kaizhi
    OPTICS COMMUNICATIONS, 2023, 546
  • [30] HIGH-RESOLUTION REAL-TIME SONOGRAPHY OF THE PARATHYROID
    SIMEONE, JF
    MUELLER, PR
    FERRUCCI, JT
    VANSONNENBERG, E
    WANG, CA
    HALL, DA
    WITTENBERG, J
    RADIOLOGY, 1981, 141 (03) : 745 - 751