Effect of Titanium Surfaces on the Osteogenic Differentiation of Human Adipose-Derived Stem Cells

被引:11
|
作者
Zanicotti, Diogo Godoy [1 ,2 ]
Duncan, Warwick John [2 ]
Seymour, Gregory John [2 ]
Coates, Dawn Elizabeth [2 ]
机构
[1] Wellington Periodont & Dent Implants, Wellington, New Zealand
[2] Univ Otago, Fac Dent, Sir John Walsh Res Inst, Dept Oral Sci, Dunedin, New Zealand
关键词
biomaterials; bone-implant interactions; bone substitutes; GENE-EXPRESSION; DENTAL IMPLANTS; IN-VITRO; OSTEOBLAST DIFFERENTIATION; TRANSCRIPTION FACTOR; TISSUE; CULTURE; PROLIFERATION; SERUM; GROWTH;
D O I
10.11607/jomi.5810
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Purpose: To investigate whether human adipose-derived stem cells will form a functional bone-like matrix on titanium substrates. The behavior of human adipose-derived stem cells was examined when grown in either serum-free, xeno-free stem cell growth medium or osteogenic differentiation medium and cultured on either machined titanium (MTi) or on roughened alumina-blasted titanium (ABTi) discs. Materials and Methods: Cellular proliferation, extracellular mineralized matrix production, osteogenic-related protein production (RUNX2 and osteocalcin), and gene expression for pluripotency and self-renewal (TERT and OCT4) and osteogenic-related (MSX2, RUNX2, and BGLAP) genes were performed. Results: Human adipose-derived stem cells in serum-free medium (hADSC) proliferated at a higher rate compared with osteogenically differentiated cells (hOS-ADSC); however, the osteogenically committed cells produced more mineralized matrix on the titanium surfaces compared with either tissue culture plastic or the undifferentiated cells. The immunofluorescence analysis showed that human adipose-derived stem cells cultured in serum-free medium and osteogenic differentiation medium produced RUNX2 on both the machined titanium surface and on the alumina-blasted titanium surface after 7 days in culture. Only osteogenically differentiated cells produced osteocalcin after 21 days. Relative gene expression showed stable expression of MSX2, RUNX2, and BGLAP over time on all surfaces. Only osteogenically differentiated cells displayed osteogenic characteristics over time. Conclusion: This study confirmed that human adipose-derived stem cells could be successfully grown in serum-free, xeno-free culture medium suitable for clinical use. Adipose-derived stem cells thus show potential utility for bone regeneration in association with titanium surfaces.
引用
收藏
页码:E77 / E87
页数:11
相关论文
共 50 条
  • [11] Hydrothermally treated titanium surfaces for enhanced osteogenic differentiation of adipose derived stem cells
    Manivasagam, Vignesh K.
    Popat, Ketul C.
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2021, 128
  • [12] The Positive Effect of TET2 on the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells
    Feng, Li
    Zhou, Jing
    Xia, Bo
    Tian, Bao-Fang
    CELLULAR REPROGRAMMING, 2020, 22 (01) : 3 - 13
  • [13] DQAsomes Nanoparticles Promote Osteogenic Differentiation of Human Adipose-derived Mesenchymal Stem Cells
    Bae, Yoonhee
    Jung, Min Kyo
    Mun, Ji Young
    Mallick, Sudipta
    Song, Su Jeong
    Kim, Dong Min
    Ko, Kyung Soo
    Han, Jin
    Choi, Joon Sig
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2018, 39 (01): : 97 - 104
  • [14] Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells
    Bing Sun
    Rongmei Qu
    Tingyu Fan
    Yuchao Yang
    Xin Jiang
    Asmat Ullah Khan
    Zhitao Zhou
    Jingliao Zhang
    Kuanhai Wei
    Jun Ouyang
    Jingxing Dai
    Cellular & Molecular Biology Letters, 2021, 26
  • [15] Osteogenic differentiation of human adipose-derived mesenchymal stem cells on gum tragacanth hydrogel
    Haeri, Seyed Mohammad Jafar
    Sadeghi, Yousef
    Salehi, Mohammad
    Farahani, Reza Masteri
    Mohsen, Nourozian
    BIOLOGICALS, 2016, 44 (03) : 123 - 128
  • [16] miRNA expression profile during osteogenic differentiation of human adipose-derived stem cells
    Zhang, Zi-ji
    Zhang, Hao
    Kang, Yan
    Sheng, Pu-yi
    Ma, Yuan-chen
    Yang, Zi-bo
    Zhang, Zhi-qi
    Fu, Ming
    He, Ai-shan
    Liao, Wei-ming
    JOURNAL OF CELLULAR BIOCHEMISTRY, 2012, 113 (03) : 888 - 898
  • [17] Novel and Unconventional Methods for Effective Osteogenic Differentiation of Human Adipose-derived Stem Cells
    Truchan, Karolina
    Zagrajczuk, Barbara
    Cholewa-Kowalska, Katarzyna
    Osyczka, Anna Maria
    JOURNAL OF BONE AND MINERAL RESEARCH, 2024, 39 : 342 - 342
  • [18] Graphene oxide reinforced hydrogels for osteogenic differentiation of human adipose-derived stem cells
    Noh, Myungkyung
    Kim, Su-Hwan
    Kim, Jiyong
    Lee, Ju-Ro
    Jeong, Gun-Jae
    Yoon, Jeong-Kee
    Kang, Seokyung
    Bhang, Suk Ho
    Yoon, Hee Hun
    Lee, Jong-Chan
    Hwang, Nathaniel S.
    Kim, Byung-Soo
    RSC ADVANCES, 2017, 7 (34): : 20779 - 20788
  • [19] Actin polymerization state regulates osteogenic differentiation in human adipose-derived stem cells
    Sun, Bing
    Qu, Rongmei
    Fan, Tingyu
    Yang, Yuchao
    Jiang, Xin
    Khan, Asmat Ullah
    Zhou, Zhitao
    Zhang, Jingliao
    Wei, Kuanhai
    Ouyang, Jun
    Dai, Jingxing
    CELLULAR & MOLECULAR BIOLOGY LETTERS, 2021, 26 (01)
  • [20] PPARγ silencing enhances osteogenic differentiation of human adipose-derived mesenchymal stem cells
    Lee, Mon-Juan
    Chen, Hui-Ting
    Ho, Mei-Ling
    Chen, Chung-Hwan
    Chuang, Shu-Chun
    Huang, Sung-Cheng
    Fu, Yin-Chih
    Wang, Gwo-Jaw
    Kang, Lin
    Chang, Je-Ken
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2013, 17 (09) : 1188 - 1193