Parallel QR processing of Generalized Sylvester matrices

被引:0
|
作者
Kourniotis, M. [1 ]
Mitrouli, M. [1 ]
Triantafyllou, D. [1 ]
机构
[1] Univ Athens, Dept Math, Athens 15784, Greece
关键词
Generalized Sylvester; Parallel QR factorization; Rank; ScaLapack; Numerical methods;
D O I
10.1016/j.tcs.2010.11.051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we develop a parallel QR factorization for the generalized Sylvester matrix. We also propose a significant faster evaluation of the QR applied to a modified version of the initial matrix. This decomposition reveals useful information such as the rank of the matrix and the greatest common divisor of the polynomials formed from its coefficients. We explicitly demonstrate the parallel implementation of the proposed methods and compare them with the serial ones. Numerical experiments are also presented showing the speed of the parallel algorithms. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1484 / 1491
页数:8
相关论文
共 50 条
  • [31] Eigenvectors of tridiagonal matrices of Sylvester type
    Wenchang Chu
    Xiaoyuan Wang
    Calcolo, 2008, 45 : 217 - 233
  • [32] QR FACTORIZATION OF TOEPLITZ MATRICES
    BOJANCZYK, AW
    BRENT, RP
    de Hoog, FR
    NUMERISCHE MATHEMATIK, 1986, 49 (01) : 81 - 94
  • [33] On the Noncyclic Property of Sylvester Hadamard Matrices
    Tang, Xiaohu
    Parampalli, Udaya
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (09) : 4653 - 4658
  • [34] A NOTE ON GENERALIZED SYLVESTER POLYNOMIALS
    AGARWAL, AK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1984, 15 (04): : 431 - 434
  • [35] Symmetry of eigenvalues of Sylvester matrices and tensors
    Shenglong Hu
    Science China(Mathematics), 2020, 63 (05) : 845 - 872
  • [36] SYLVESTER THEOREM FOR MATRICES WITH SMOOTH ENTRIES
    FREDRICKS, GA
    AMERICAN MATHEMATICAL MONTHLY, 1982, 89 (08): : 586 - 587
  • [37] Sylvester Index of Random Hermitian Matrices
    Bouali, Mohamed
    Faraut, Jacques
    JOURNAL OF THEORETICAL PROBABILITY, 2024, 37 (01) : 768 - 813
  • [38] Symmetry of eigenvalues of Sylvester matrices and tensors
    Hu, Shenglong
    SCIENCE CHINA-MATHEMATICS, 2020, 63 (05) : 845 - 872
  • [39] POSITIVE DEFINITE MATRICES AND SYLVESTER CRITERION
    GILBERT, GT
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (01): : 44 - 46
  • [40] Sylvester Index of Random Hermitian Matrices
    Mohamed Bouali
    Jacques Faraut
    Journal of Theoretical Probability, 2024, 37 : 768 - 813