Leading-order relativistic effects on nuclear magnetic resonance shielding tensors

被引:102
|
作者
Manninen, P
Ruud, K
Lantto, P
Vaara, J
机构
[1] Univ Helsinki, Dept Chem, Chem Phys Lab, FIN-00014 Helsinki, Finland
[2] Univ Tromso, Dept Chem, N-9037 Tromso, Norway
[3] Oulu Univ, Dept Phys Sci, FIN-90014 Oulu, Finland
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 122卷 / 11期
基金
芬兰科学院;
关键词
D O I
10.1063/1.1861872
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present perturbational ab initio calculations of the nuclear-spin-dependent relativistic corrections to the nuclear magnetic resonance shielding tensors that constitute, together with the other relativistic terms reported by us earlier, the full leading-order perturbational set of results for the one-electron relativistic contributions to this observable, based on the (Breit-)Pauli Hamiltonian. These contributions are considered for the H2X (X = O, S, Se, Te, Po) and HX (X = F, Cl, Br, I, At) molecules, as well as the noble gas (Ne, Ar, Kr, Xe, Rn) atoms. The corrections are evaluated using the relativistic and magnetic operators as perturbations on an equal footing, calculated using analytical linear and quadratic response theory applied on top of a nonrelativistic reference state provided by self-consistent field calculations. The H-1 and heavy-atom nuclear magnetic shielding tensors are compared with four component, nearly basis-set-limit Dirac-Hartree-Fock calculations that include positronic excitations, as well as available literature data. Besides the easy interpretability of the different contributions in terms of familiar nonrelativistic concepts, the accuracy of the present perturbational scheme tensor, for systems including elements up to Xe. @ 2005 American Institute of Physics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] ELECTRIC AND MAGNETIC NUCLEAR SHIELDING TENSORS - A STUDY OF THE WATER MOLECULE
    LAZZERETTI, P
    ZANASI, R
    PHYSICAL REVIEW A, 1986, 33 (06): : 3727 - 3741
  • [22] Ab Initio Molecular Local Nuclear Magnetic Shielding Tensors
    Joudieh, Nabil
    Bagci, Ali
    Hoggan, Philip E.
    NOVEL ELECTRONIC STRUCTURE THEORY: GENERAL INNOVATIONS AND STRONGLY CORRELATED SYSTEMS, 2018, 76 : 167 - 183
  • [23] NUCLEAR MAGNETIC-RESONANCE STUDIES OF H-1 IN ZIRCONIUM HALIDE HYDRIDES - SHIELDING TENSORS
    MURPHY, PD
    GERSTEIN, BC
    JOURNAL OF CHEMICAL PHYSICS, 1979, 70 (10): : 4552 - 4556
  • [24] Predicting 9Be nuclear magnetic resonance chemical shielding tensors utilizing density functional theory
    Plieger, PG
    John, KD
    Keizer, TS
    McCleskey, TM
    Burrell, AK
    Martint, RL
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (44) : 14651 - 14658
  • [25] Natural chemical shielding analysis of nuclear magnetic resonance shielding tensors from gauge-including atomic orbital calculations
    Bohmann, JA
    Weinhold, F
    Farrar, TC
    JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (04): : 1173 - 1184
  • [26] Leading-order decuplet contributions to the baryon magnetic moments in chiral perturbation theory
    Geng, L. S.
    Martin Camalich, J.
    Vicente Vacas, M. J.
    PHYSICS LETTERS B, 2009, 676 (1-3) : 63 - 68
  • [27] Relativistic, QED, and nuclear mass effects in the magnetic shielding of 3He
    Rudzinski, Adam
    Puchalski, Mariusz
    Pachucki, Krzysztof
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (24):
  • [28] Relativistic frozen density embedding calculations of solvent effects on the nuclear magnetic resonance shielding constants of transition metal nuclei
    Olejniczak, Malgorzata
    Antusek, Andrej
    Jaszunski, Michal
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (22)
  • [29] Leading-order hadronic contributions to the lepton anomalous magnetic moments from the lattice
    Burger, Florian
    Feng, Xu
    Jansen, Karl
    Petschlies, Marcus
    Pientka, Grit
    Renner, Dru B.
    INTERNATIONAL WORKSHOP ON FLAVOUR CHANGING AND CONSERVING PROCESSES 2015 (FCCP 2015), 2016, 118
  • [30] Leading-order QED effects in the ground electronic state of molecular hydrogen
    Silkowski, Michal
    Pachucki, Krzysztof
    Komasa, Jacek
    Puchalski, Mariusz
    PHYSICAL REVIEW A, 2023, 107 (03)