Addition of a polygenic risk score, mammographic density, and endogenous hormones to existing breast cancer risk prediction models: A nested case-control study

被引:79
|
作者
Zhang, Xuehong [1 ,2 ]
Rice, Megan [3 ]
Tworoger, Shelley S. [1 ,2 ,4 ,5 ]
Rosner, Bernard A. [1 ,2 ,6 ]
Eliassen, A. Heather [1 ,2 ,4 ]
Tamimi, Rulla M. [1 ,2 ,4 ]
Joshi, Amit D. [3 ,4 ]
Lindstrom, Sara [4 ,7 ]
Qian, Jing [8 ]
Colditz, Graham A. [9 ]
Willett, Walter C. [1 ,2 ,4 ,10 ]
Kraft, Peter [4 ,6 ]
Hankinson, Susan E. [1 ,2 ,4 ,8 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Channing Div Network Med, 75 Francis St, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Massachusetts Gen Hosp, Dept Med, Clin & Translat Epidemiol Unit, Boston, MA 02114 USA
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] H Lee Moffitt Canc Ctr & Res Inst, Dept Canc Epidemiol, Tampa, FL USA
[6] H Lee Moffitt Canc Ctr & Res Inst, Dept Biostat, Tampa, FL USA
[7] Univ Washington, Dept Epidemiol, Seattle, WA 98195 USA
[8] Univ Massachusetts, Sch Publ Hlth & Hlth Sci, Dept Biostat & Epidemiol, Amherst, MA 01003 USA
[9] Washington Univ, Sch Med, Dept Surg, St Louis, MO 63110 USA
[10] Harvard TH Chan Sch Publ Hlth, Dept Nutr, Boston, MA USA
来源
PLOS MEDICINE | 2018年 / 15卷 / 09期
基金
美国国家卫生研究院;
关键词
AFRICAN-AMERICAN WOMEN; POSTMENOPAUSAL WOMEN; NURSES HEALTH; PREMENOPAUSAL WOMEN; RELATIVE RISKS; SEX-HORMONES; WHITE WOMEN; EPIC COHORT; VALIDATION; PROLACTIN;
D O I
10.1371/journal.pmed.1002644
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background No prior study to our knowledge has examined the joint contribution of a polygenic risk score (PRS), mammographic density (MD), and postmenopausal endogenous hormone levels D all well-confirmed risk factors for invasive breast cancer D to existing breast cancer risk prediction models. Methods and findings We conducted a nested case-control study within the prospective Nurses' Health Study and Nurses' Health Study II including 4,006 cases and 7,874 controls ages 34-70 years up to 1 June 2010. We added a breast cancer PRS using 67 single nucleotide polymorphisms, MD, and circulating testosterone, estrone sulfate, and prolactin levels to existing risk models. We calculated area under the curve (AUC), controlling for age and stratified by menopausal status, for the 5-year absolute risk of invasive breast cancer. We estimated the population distribution of 5-year predicted risks for models with and without biomarkers. For the Gail model, the AUC improved (p-values < 0.001) from 55.9 to 64.1 (8.2 units) in premenopausal women (Gail + PRS + MD), from 55.5 to 66.0 (10.5 units) in postmenopausal women not using hormone therapy (HT) (Gail + PRS + MD + all hormones), and from 58.0 to 64.9 (6.9 units) in postmenopausal women using HT (Gail + PRS + MD + prolactin). For the Rosner-Colditz model, the corresponding AUCs improved (p-values < 0.001) by 5.7, 6.2, and 6.5 units. For estrogen-receptor-positive tumors, among postmenopausal women not using HT, the AUCs improved (p-values < 0.001) by 14.3 units for the Gail model and 7.3 units for the Rosner-Colditz model. Additionally, the percentage of 50-year-old women predicted to be at more than twice 5-year average risk (>= 2.27%) was 0.2% for the Gail model alone and 6.6% for the Gail + PRS + MD + all hormones model. Limitations of our study included the limited racial/ethnic diversity of our cohort, and that general population exposure distributions were unavailable for some risk factors. Conclusions In this study, the addition of PRS, MD, and endogenous hormones substantially improved existing breast cancer risk prediction models. Further studies will be needed to confirm these findings and to determine whether improved risk prediction models have practical value in identifying women at higher risk who would most benefit from chemoprevention, screening, and other risk-reducing strategies.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Mammographic breast density and breast cancer risk in the Saudi population: a case-control study using visual and automated methods
    Aloufi, Areej S.
    Alnaeem, Abdulrahman N.
    Almousa, Abeer S.
    Hashem, Amani M.
    Malik, Mehreen A.
    Altahan, Fatina M.
    Elsharkawi, Mahmoud M.
    Almasar, Khalid A.
    Elmahdy, Manal H.
    Squires, Steven E.
    Alzimami, Khalid S.
    Harkness, Elaine F.
    Astley, Susan M.
    BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1134):
  • [42] Joint association of mammographic density adjusted for age and body mass index and polygenic risk score with breast cancer risk
    Celine M. Vachon
    Christopher G. Scott
    Rulla M. Tamimi
    Deborah J. Thompson
    Peter A. Fasching
    Jennifer Stone
    Melissa C. Southey
    Stacey Winham
    Sara Lindström
    Jenna Lilyquist
    Graham G. Giles
    Roger L. Milne
    Robert J. MacInnis
    Laura Baglietto
    Jingmei Li
    Kamila Czene
    Manjeet K. Bolla
    Qin Wang
    Joe Dennis
    Lothar Haeberle
    Mikael Eriksson
    Peter Kraft
    Robert Luben
    Nick Wareham
    Janet E. Olson
    Aaron Norman
    Eric C. Polley
    Gertraud Maskarinec
    Loic Le Marchand
    Christopher A. Haiman
    John L. Hopper
    Fergus J. Couch
    Douglas F. Easton
    Per Hall
    Nilanjan Chatterjee
    Montse Garcia-Closas
    Breast Cancer Research, 21
  • [43] Joint association of mammographic density adjusted for age and body mass index and polygenic risk score with breast cancer risk
    Vachon, Celine M.
    Scott, Christopher G.
    Tamimi, Rulla M.
    Thompson, Deborah J.
    Fasching, Peter A.
    Stone, Jennifer
    Southey, Melissa C.
    Winham, Stacey
    Lindstrom, Sara
    Lilyquist, Jenna
    Giles, Graham G.
    Milne, Roger L.
    MacInnis, Robert J.
    Baglietto, Laura
    Li, Jingmei
    Czene, Kamila
    Bolla, Manjeet K.
    Wang, Qin
    Dennis, Joe
    Haeberle, Lothar
    Eriksson, Mikael
    Kraft, Peter
    Luben, Robert
    Wareham, Nick
    Olson, Janet E.
    Norman, Aaron
    Polley, Eric C.
    Maskarinec, Gertraud
    Le Marchand, Loic
    Haiman, Christopher A.
    Hopper, John L.
    Couch, Fergus J.
    Easton, Douglas F.
    Hall, Per
    Chatterjee, Nilanjan
    Garcia-Closas, Montse
    BREAST CANCER RESEARCH, 2019, 21 (1)
  • [44] Premenopausal serum androgens and breast cancer risk: a nested case-control study
    Zeleniuch-Jacquotte, Anne
    Afanasyeva, Yelena
    Kaaks, Rudolf
    Rinaldi, Sabina
    Scarmo, Stephanie
    Liu, Mengling
    Arslan, Alan A.
    Toniolo, Paolo
    Shore, Roy E.
    Koenig, Karen L.
    BREAST CANCER RESEARCH, 2012, 14 (01)
  • [45] Premenopausal serum androgens and breast cancer risk: a nested case-control study
    Anne Zeleniuch-Jacquotte
    Yelena Afanasyeva
    Rudolf Kaaks
    Sabina Rinaldi
    Stephanie Scarmo
    Mengling Liu
    Alan A Arslan
    Paolo Toniolo
    Roy E Shore
    Karen L Koenig
    Breast Cancer Research, 14
  • [46] Bioactive Prolactin Levels and Risk of Breast Cancer: A Nested Case-Control Study
    Tworoger, Shelley S.
    Rice, Megan S.
    Rosner, Bernard A.
    Feeney, Yvonne B.
    Clevenger, Charles V.
    Hankinson, Susan E.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2015, 24 (01) : 73 - 80
  • [47] Validation of a breast cancer risk prediction model based on the key risk factors: family history, mammographic density and polygenic risk
    Richard Allman
    Yi Mu
    Gillian S. Dite
    Erika Spaeth
    John L. Hopper
    Bernard A. Rosner
    Breast Cancer Research and Treatment, 2023, 198 : 335 - 347
  • [48] Validation of a breast cancer risk prediction model based on the key risk factors: family history, mammographic density and polygenic risk
    Allman, Richard
    Mu, Yi
    Dite, Gillian S.
    Spaeth, Erika
    Hopper, John L.
    Rosner, Bernard A.
    BREAST CANCER RESEARCH AND TREATMENT, 2023, 198 (02) : 335 - 347
  • [49] External validation of a mammographic texture marker for breast cancer risk in a case-control study
    Wang, Chao
    Brentnall, Adam R.
    Mainprize, James
    Yaffe, Martin
    Cuzick, Jack
    Harvey, Jennifer A.
    JOURNAL OF MEDICAL IMAGING, 2020, 7 (01)
  • [50] Combination of phenotype and polygenic risk score in breast cancer risk evaluation in the Spanish population: a case –control study
    J. C. Triviño
    A. Ceba
    E. Rubio-Solsona
    D. Serra
    I. Sanchez-Guiu
    G. Ribas
    R. Rosa
    M. Cabo
    L. Bernad
    G. Pita
    A. Gonzalez-Neira
    G. Legarda
    J. L. Diaz
    A. García-Vigara
    A. Martínez-Aspas
    M. Escrig
    B. Bermejo
    P. Eroles
    J. Ibáñez
    D. Salas
    A. Julve
    A. Cano
    A. Lluch
    R. Miñambres
    J. Benitez
    BMC Cancer, 20