A Kernel Analysis of Feature Learning in Deep Neural Networks

被引:1
|
作者
Canatar, Abdulkadir [1 ]
Pehlevan, Cengiz [2 ,3 ]
机构
[1] Flatiron Inst, Ctr Computat Neurosci, New York, NY USA
[2] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[3] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
关键词
deep learning; kernel methods;
D O I
10.1109/ALLERTON49937.2022.9929375
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Deep neural networks learn useful representations of data, yet the nature of these representations has not been fully understood. Here, we empirically study the kernels induced by the layer representations during training by analyzing their kernel alignment to the network's target function. We show that representations from earlier to deeper layers increasingly align with the target task for both training and test sets, implying better generalization. We analyze these representations across different architectures, optimization methods and batch sizes. Furthermore, we compare the Neural Tangent Kernel (NTK) of deep neural networks and its alignment with the target during training and find that NTK-target alignment also increases during training.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Convergence Analysis for Learning Orthonormal Deep Linear Neural Networks
    Qin, Zhen
    Tan, Xuwei
    Zhu, Zhihui
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 795 - 799
  • [42] Deep Learning with Convolutional Neural Networks for Histopathology Image Analysis
    Bosnacki, Dragan
    van Riel, Natal
    Veta, Mitko
    AUTOMATED REASONING FOR SYSTEMS BIOLOGY AND MEDICINE, 2019, 30 : 453 - 469
  • [43] Federated Learning for Medical Image Analysis with Deep Neural Networks
    Nazir, Sajid
    Kaleem, Mohammad
    DIAGNOSTICS, 2023, 13 (09)
  • [44] Generalization Analysis of Pairwise Learning for Ranking With Deep Neural Networks
    Huang, Shuo
    Zhou, Junyu
    Feng, Han
    Zhou, Ding-Xuan
    NEURAL COMPUTATION, 2023, 35 (06) : 1135 - 1158
  • [45] Sample-based Kernel Structure Learning with Deep Neural Networks for Automated Structure Discovery
    Grass, Alexander
    Doehmen, Till
    Beecks, Christian
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOPS (ICDEW 2022), 2022, : 79 - 83
  • [46] Feedforward kernel neural networks, generalized least learning machine, and its deep learning with application to image classification
    Wang, Shitong
    Jiang, Yizhang
    Chung, Fu-Lai
    Qian, Pengjiang
    APPLIED SOFT COMPUTING, 2015, 37 : 125 - 141
  • [47] Online Deep Learning: Learning Deep Neural Networks on the Fly
    Sahoo, Doyen
    Pham, Quang
    Lu, Jing
    Hoi, Steven C. H.
    PROCEEDINGS OF THE TWENTY-SEVENTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2018, : 2660 - 2666
  • [48] Random Feature Amplification: Feature Learning and Generalization in Neural Networks
    Frei, Spencer
    Chatterji, Niladri S.
    Bartlett, Peter L.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [49] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [50] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1633 - 1638