Swift Imbalance Data Classification using SMOTE and Extreme Learning Machine

被引:9
|
作者
Rustogi, Rishabh [1 ]
Prasad, Ayush [1 ]
机构
[1] Shiv Nadar Univ, Dept Comp Sci, Greater Noida, Uttar Pradesh, India
关键词
Imbalanced Data; Data Classification; Extreme Learning Machine; SMOTE; Condensed Nearest-Neighbor; Tomek Links;
D O I
10.1109/iccids.2019.8862112
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Continuous expansion in the fields of science and technology has led to the immense availability and attainability of data in every field. Fundamentally understanding and analyzing this data is a critical job in the decision-making process. Although, great success has been achieved by the prevailing data engineering and mining techniques, the problem of swift classification of the imbalanced data still exists in academia and industry. A potential solution to the problem of skewness in data can be resolved by data upsampling or downsampling. There exists a few techniques that firstly remove skewness and then perform classification, however, these methods suffer from hurdles like abortive precision or slower learning rate. In this paper, a hybrid method to classify binary imbalanced data using Synthetic Minority Over-sampling Technique followed by Extreme Learning Machine is proposed. Our method along with swift learning rate is efficacious to predict the desired class. We verified our model using five standard imbalance dataset and obtained higher F-measure, G-mean and ROC score for all the dataset.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] SMOTE based class-specific extreme learning machine for imbalanced learning
    Raghuwanshi, Bhagat Singh
    Shukla, Sanyam
    KNOWLEDGE-BASED SYSTEMS, 2020, 187
  • [32] IMBALANCED DATA CLASSIFICATION BASED ON EXTREME LEARNING MACHINE AUTOENCODER
    Shen, Chu
    Zhang, Su-Fang
    Zhai, Jun-Hal
    Luo, Ding-Sheng
    Chen, Jun-Fen
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 2, 2018, : 399 - 404
  • [33] Classification of Uncertain Data Streams Based on Extreme Learning Machine
    Cao, Keyan
    Wang, Guoren
    Han, Donghong
    Ning, Jingwei
    Zhang, Xin
    COGNITIVE COMPUTATION, 2015, 7 (01) : 150 - 160
  • [34] A robust extreme learning machine framework for uncertain data classification
    Jing, Shibo
    Yang, Liming
    JOURNAL OF SUPERCOMPUTING, 2020, 76 (04): : 2390 - 2416
  • [35] Incomplete data classification with voting based extreme learning machine
    Yan, Yuan-Ting
    Zhang, Yan-Ping
    Chen, Jie
    Zhang, Yi-Wen
    NEUROCOMPUTING, 2016, 193 : 167 - 175
  • [36] An improved weighted extreme learning machine for imbalanced data classification
    Chengbo Lu
    Haifeng Ke
    Gaoyan Zhang
    Ying Mei
    Huihui Xu
    Memetic Computing, 2019, 11 : 27 - 34
  • [37] Data Stream Classification Based on Extreme Learning Machine: Review
    Zheng, Xiulin
    Li, Peipei
    Wu, Xindong
    BIG DATA RESEARCH, 2022, 30
  • [38] Classification of Uncertain Data Streams Based on Extreme Learning Machine
    Keyan Cao
    Guoren Wang
    Donghong Han
    Jingwei Ning
    Xin Zhang
    Cognitive Computation, 2015, 7 : 150 - 160
  • [39] A robust extreme learning machine framework for uncertain data classification
    Shibo Jing
    Liming Yang
    The Journal of Supercomputing, 2020, 76 : 2390 - 2416
  • [40] An improved weighted extreme learning machine for imbalanced data classification
    Lu, Chengbo
    Ke, Haifeng
    Zhang, Gaoyan
    Mei, Ying
    Xu, Huihui
    MEMETIC COMPUTING, 2019, 11 (01) : 27 - 34