Estimation of the size of GBF area on fracture surface for high strength steels in very high cycle fatigue regime

被引:56
|
作者
Yang, Z. G. [1 ]
Li, S. X. [1 ]
Liu, Y. B. [1 ]
Li, Y. D. [1 ]
Li, G. Y. [1 ]
Hui, W. J. [2 ]
Weng, Y. Q. [2 ]
机构
[1] Chinese Acad Sci, Met Res Inst, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
[2] Cent Iron & Steel Res Inst, Beijing 100081, Peoples R China
关键词
high strength steel; very high cycle fatigue; granular bright facet (GBF); hydrogen; the maximum size of the plastic zone; fatigue crack growth rate;
D O I
10.1016/j.ijfatigue.2007.08.011
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The sizes of the "granular bright facet' (GBF) areas on fracture surfaces of specimens subjected to very high cycle fatigue for two high strength spring steels were measured in a field emission scanning electron microscope (FESEM) and compared with the estimated values, and a good agreement was found between the two sets of data. A criterion was proposed to estimate the sizes of GBF areas. It was assumed that when the increment of crack length in one applied stress cycle (numerically equal to crack growth rate, da/dN) is just equal to the plastic zone size in front of crack tip, r(p), the GBF stops developing. It means that hydrogen accumulating in the plastic zone under applied stress influences mostly on the fatigue behaviors which results in the morphology of GBF area quite different from the conventional fatigue fracture surface. The estimated sizes of GBF areas were also in accordance with the sizes measured from fracture surfaces of other high strength steels provided that the hydrogen concentration in those steels was not much higher than that in present spring steels. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1016 / 1023
页数:8
相关论文
共 50 条
  • [1] Factors influencing the GBF size of high strength steels in the very high cycle fatigue regime
    Liu, Y. B.
    Li, S. X.
    Li, Y. D.
    Yang, Z. G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (03): : 935 - 942
  • [2] On the formation of GBF of high-strength steels in the very high cycle fatigue regime
    Liu, Y. B.
    Yang, Z. G.
    Li, Y. D.
    Chen, S. M.
    Li, S. X.
    Hui, W. J.
    Weng, Y. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 497 (1-2): : 408 - 415
  • [3] Dependence of fatigue strength on inclusion size for high-strength steels in very high cycle fatigue regime
    Liu, Y. B.
    Yang, Z. G.
    Li, Y. D.
    Chen, S. M.
    Li, S. X.
    Hui, W. J.
    Weng, Y. Q.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 517 (1-2): : 180 - 184
  • [4] Fatigue Strength and Fracture Mechanisms in the Very-High-Cycle-Fatigue Regime of Automotive Steels
    Sadek, Mohamed
    Bergstrom, Jens
    Hallback, Nils
    Burman, Christer
    Elvira, Roberto
    Escauriaza, Borja
    STEEL RESEARCH INTERNATIONAL, 2020, 91 (08)
  • [5] Prediction of fatigue life on high-strength steels in very high cycle regime
    Shiozawa, Kazuaki
    Shimatani, Yuuji
    Murata, Shoichiro
    Lu, Lientao
    Li, Sizeng
    Nihon Kikai Gakkai Ronbunshu, A Hen/Transactions of the Japan Society of Mechanical Engineers, Part A, 2012, 78 (793): : 1300 - 1313
  • [6] Influence of Hydrogen on GBF in Very High Cycle Fatigue of High Strength Steel
    Chao Zhou
    Yong-jian Zhang
    Wei-jun Hui
    Lei Wang
    Journal of Iron and Steel Research International, 2013, 20 : 92 - 97
  • [7] Influence of Hydrogen on GBF in Very High Cycle Fatigue of High Strength Steel
    Zhou Chao
    Zhang Yong-jian
    Hui Wei-jun
    Wang Lei
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2013, 20 (12) : 92 - 97
  • [8] Influence of Hydrogen on GBF in Very High Cycle Fatigue of High Strength Steel
    ZHOU Chao
    ZHANG Yong-jian
    HUI Wei-jun
    WANG Lei
    Journal of Iron and Steel Research(International), 2013, 20 (12) : 92 - 97
  • [9] Mechanism of fatigue crack initiation and propagation in the very high cycle fatigue regime of high-strength steels
    Grad, P.
    Reuscher, B.
    Brodyanski, A.
    Kopnarski, M.
    Kerscher, E.
    SCRIPTA MATERIALIA, 2012, 67 (10) : 838 - 841
  • [10] Mechanism of crack initiation and early growth of high strength steels in very high cycle fatigue regime
    Song, Qingyuan
    Sun, Chengqi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 771