Vector coding algorithms for multidimensional discrete Fourier transform

被引:2
|
作者
Chen, Zhaodou [1 ]
Zhang, Lijing [2 ]
机构
[1] China Univ Geosci, Sch Informat Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Dept Mat & Mech, Beijing 100083, Peoples R China
关键词
vector coding; multidimensional DFT; Cooley-Tukey FFT; row-column algorithm; butterfly operation;
D O I
10.1016/j.cam.2006.11.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new fast algorithm is presented for the multidimensional discrete Fourier transform (DFT). This algorithm is derived using an interesting technique called "vector coding" (VC), and we call it the vector-coding fast Fourier transform (VC-FFT) algorithm. Since the VC-FFT is an extension of the Cooley-Tukey algorithm from I-D to multidimensional form, the structure of the program is as simple as the Cooley-Tukey fast Fourier transform (FFT). The new algorithm significantly reduces the number of multiplications and recursive stages. The VC-FFT therefore comprehensively reduces the complexity of the algorithm as compared with other current multidimensional DFT algorithms. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [11] Color image coding based on multidimensional vector matrix discrete cosine transform theory
    Liu, Li-Li
    Chen, He-Xin
    Sang, Ai-Jun
    Hu, Tie-Gen
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2011, 41 (06): : 1754 - 1759
  • [12] FAST ALGORITHMS FOR THE DISCRETE W TRANSFORM AND FOR THE DISCRETE FOURIER-TRANSFORM
    WANG, ZD
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (04): : 803 - 816
  • [13] FAST ALGORITHMS FOR THE DISCRETE W TRANSFORM AND FOR THE DISCRETE FOURIER TRANSFORM.
    Wang, Zhongde
    IEEE Transactions on Acoustics, Speech, and Signal Processing, 1984, ASSP-32 (04): : 803 - 816
  • [14] SOURCE CODING OF DISCRETE FOURIER-TRANSFORM
    PEARLMAN, WA
    GRAY, RM
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (06) : 683 - 692
  • [15] New algorithms for multidimensional discrete Hartley transform
    Zeng, YH
    Bi, G
    Leyman, AR
    SIGNAL PROCESSING, 2002, 82 (08) : 1086 - 1095
  • [16] THE ANALYSIS OF THE DISCRETE FRACTIONAL FOURIER TRANSFORM ALGORITHMS
    Ran, Qi-Wen
    Zhang, Hai-Ying
    Zhang, Zhong-Zhao
    Sha, Xue-Jun
    2009 IEEE 22ND CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1 AND 2, 2009, : 689 - 692
  • [17] Parallel algorithms for a hypercomplex discrete fourier transform
    Aliev M.V.
    Belov A.M.
    Ershov A.V.
    Chicheva M.A.
    Pattern Recognition and Image Analysis, 2007, 17 (1) : 1 - 5
  • [18] Parallelization techniques for multidimensional hypercomplex discrete Fourier transform
    Chicheva, M
    Aliev, M
    Yershov, A
    PARALLEL COMPUTING TECHNOLOGIES, 2005, 3606 : 413 - 419
  • [19] PROPERTIES OF THE MULTIDIMENSIONAL GENERALIZED DISCRETE FOURIER-TRANSFORM
    CORSINI, P
    FROSINI, G
    IEEE TRANSACTIONS ON COMPUTERS, 1979, 28 (11) : 819 - 830
  • [20] An efficient algorithm for the computation of the multidimensional discrete Fourier transform
    Bouguezal, S
    Chikouche, D
    Khellaf, A
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 1999, 10 (03) : 275 - 304