Growth and Non-Metricity in Foppl-von Karman Shells

被引:6
|
作者
Roychowdhury, Ayan [1 ]
Gupta, Anurag [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
关键词
Foppl-von Karman equations; Shallow shells; Growth; Non-metricity tensor; GEOMETRY; SHAPE;
D O I
10.1007/s10659-020-09766-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The non-homogeneous Foppl-von Karman equations for growing thin elastic shallow shells are revisited by deriving the inhomogeneity source terms directly from the non-metricity tensor associated with growth. This is in contrast with the existing literature where the source terms are obtained using the extensional and curvature growth strains after exploiting the additive decomposition of the total strain into its elastic and growth counterpart. Our framework not only establishes the additive decomposition but provides an unambiguous illustration of the geometric nature of growth in terms of a genuine material inhomogeneity measure given by the non-metricity tensor.
引用
收藏
页码:337 / 348
页数:12
相关论文
共 50 条
  • [1] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [2] The Foppl-von Karman equations for plates with incompatible strains
    Lewicka, Marta
    Mahadevan, L.
    Pakzad, Mohammad Reza
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126): : 402 - 426
  • [3] NUMERICAL SOLUTION OF A FOPPL-VON KARMAN MODEL
    Bartels, Soeren
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1505 - 1524
  • [4] Defects and metric anomalies in Foppl-von Karman surfaces
    Singh, Manish
    Roychowdhury, Ayan
    Gupta, Anurag
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [5] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [6] A mixed variational principle for the Foppl-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    APPLIED MATHEMATICAL MODELLING, 2020, 79 : 381 - 391
  • [7] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [8] An atomistic-based Foppl-von Karman model for graphene
    Davini, Cesare
    Favata, Antonino
    Paroni, Roberto
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 281 - 288
  • [9] Growth and Non-Metricity in Föppl-von Kármán Shells
    Ayan Roychowdhury
    Anurag Gupta
    Journal of Elasticity, 2020, 140 : 337 - 348
  • [10] Some remarks on radial solutions of Foppl-von Karman equations
    El Doussouki, A.
    Guedda, M.
    Jazar, M.
    Benlahsen, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4340 - 4345