Some remarks on radial solutions of Foppl-von Karman equations

被引:2
|
作者
El Doussouki, A. [1 ,2 ]
Guedda, M. [1 ]
Jazar, M. [2 ]
Benlahsen, M. [3 ]
机构
[1] Univ Picardie Jules Verne, CNRS UMR 7352, LAMFA, Dept Math, F-80039 Amiens, France
[2] EDST Lebanese Univ, Azm Res Ctr, LaMA Liban, Tripoli, Lebanon
[3] Univ Picardie Jules Verne, LPMC, Dept Phys, F-80039 Amiens, France
关键词
Delamination; Foppl-von Karman equations; Elastic buckling; DELAMINATION; PLATE;
D O I
10.1016/j.amc.2012.10.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study Foppl-von Karman system (1) that modelize delamination of embedded compressed thin film. We prove that if the radial component of the stress tensor is less then or equal the pre-stress, then system (1) has no nontrivial regular radial solution under suitable boundary clamped conditions. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:4340 / 4345
页数:6
相关论文
共 50 条
  • [1] The Foppl-von Karman equations for plates with incompatible strains
    Lewicka, Marta
    Mahadevan, L.
    Pakzad, Mohammad Reza
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2011, 467 (2126): : 402 - 426
  • [2] On the compatibility relation for the Foppl-von Karman plate equations
    Coman, Ciprian D.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (12) : 2407 - 2410
  • [3] A mixed variational principle for the Foppl-von Karman equations
    Brunetti, Matteo
    Favata, Antonino
    Paolone, Achille
    Vidoli, Stefano
    APPLIED MATHEMATICAL MODELLING, 2020, 79 : 381 - 391
  • [4] The Foppl-von Karman equations of elastic plates with initial stress
    Ciarletta, P.
    Pozzi, G.
    Riccobelli, D.
    ROYAL SOCIETY OPEN SCIENCE, 2022, 9 (05):
  • [5] VARIATIONAL PROBLEMS FOR FOPPL-VON KARMAN PLATES
    Maddalena, Francesco
    Percivale, Danilo
    Tomarelli, Franco
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (01) : 251 - 282
  • [6] NUMERICAL SOLUTION OF A FOPPL-VON KARMAN MODEL
    Bartels, Soeren
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2017, 55 (03) : 1505 - 1524
  • [7] Defects and metric anomalies in Foppl-von Karman surfaces
    Singh, Manish
    Roychowdhury, Ayan
    Gupta, Anurag
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2262):
  • [8] A biparametric perturbation method for the Foppl-von Karman equations of bimodular thin plates
    He, Xiao-Ting
    Cao, Liang
    Wang, Ying-Zhu
    Sun, Jun-Yi
    Zheng, Zhou-Lian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1688 - 1705
  • [9] Analytical method for the construction of solutions to the Foppl-von Karman equations governing deflections of a thin flat plate
    Van Gorder, Robert A.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (03) : 1 - 6
  • [10] An atomistic-based Foppl-von Karman model for graphene
    Davini, Cesare
    Favata, Antonino
    Paroni, Roberto
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2019, 116 : 281 - 288