Low-dimensional Alignment for Cross-Domain Recommendation

被引:16
|
作者
Wang, Tianxin [1 ]
Zhuang, Fuzhen [2 ,5 ]
Zhang, Zhiqiang [3 ]
Wang, Daixin [3 ]
Zhou, Jun [3 ]
He, Qing [1 ,4 ]
机构
[1] Chinese Acad Sci, Key Lab Intelligent Informat Proc Chinese Acad Sc, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Beihang Univ, Inst Artificial Intelligence, Beijing 100191, Peoples R China
[3] Ant Financial Serv Grp, Hangzhou, Peoples R China
[4] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Xiamen Data Intelligence Acad ICT, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Recommendation; cross-domain recommendation; neural networks; deep learning;
D O I
10.1145/3459637.3482137
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cold start problem is one of the most challenging and long-standing problems in recommender systems, and cross-domain recommendation (CDR) methods are effective for tackling it. Most cold-start related CDR methods require training a mapping function between high-dimensional embedding space using overlapping user data. However, the overlapping data is scarce in many recommendation tasks, which makes it difficult to train the mapping function. In this paper, we propose a new approach for CDR, which aims to alleviate the training difficulty. The proposed method can be viewed as a special parameterization of the mapping function without hurting expressiveness, which makes use of non-overlapping user data and leads to effective optimization. Extensive experiments on two real-world CDR tasks are performed to evaluate the proposed method. In the case that there are few overlapping data, the proposed method outperforms the existed state-of-the-art method by 14% (relative improvement).
引用
收藏
页码:3508 / 3512
页数:5
相关论文
共 50 条
  • [41] Cross-domain policy adaptation with dynamics alignment
    Gui, Haiyuan
    Pang, Shanchen
    Yu, Shihang
    Qiao, Sibo
    Qi, Yufeng
    He, Xiao
    Wang, Min
    Zhai, Xue
    NEURAL NETWORKS, 2023, 167 : 104 - 117
  • [42] Active Discriminative Cross-Domain Alignment for Low-Resolution Face Recognition
    Zheng, Dongdong
    Zhang, Kaibing
    Lu, Jian
    Jing, Junfeng
    Xiong, Zenggang
    IEEE ACCESS, 2020, 8 : 97503 - 97515
  • [43] Cross-Domain Grouping and Alignment for Domain Adaptive Semantic Segmentation
    Kim, Minsu
    Joung, Sunghun
    Kim, Seungryong
    Park, Jungin
    Kim, Ig-Jae
    Sohn, Kwanghoon
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1799 - 1807
  • [44] Privacy-Preserving Cross-Domain Sequential Recommendation
    Lin, Zhaohao
    Pan, Weike
    Ming, Zhong
    23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, ICDM 2023, 2023, : 1139 - 1144
  • [45] Adaptive Adversarial Contrastive Learning for Cross-Domain Recommendation
    Hsu, Chi-Wei
    Chen, Chiao-Ting
    Huang, Szu-Hao
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (03)
  • [46] A Hierarchical Attention Network for Cross-Domain Group Recommendation
    Liang, Ruxia
    Zhang, Qian
    Wang, Jianqiang
    Lu, Jie
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3859 - 3873
  • [47] Mixed Attention Network for Cross-domain Sequential Recommendation
    Lin, Guanyu
    Gao, Chen
    Zheng, Yu
    Chang, Jianxin
    Niu, Yanan
    Song, Yang
    Gai, Kun
    Li, Zhiheng
    Jin, Depeng
    Li, Yong
    Wang, Meng
    PROCEEDINGS OF THE 17TH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, WSDM 2024, 2024, : 405 - 413
  • [48] Cross-Domain Recommendation via Preference Propagation GraphNet
    Zhao, Cheng
    Li, Chenliang
    Fu, Cong
    PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM '19), 2019, : 2165 - 2168
  • [49] Learning Personalized Itemset Mapping for Cross-Domain Recommendation
    Zhang, Yinan
    Liu, Yong
    Han, Peng
    Miao, Chunyan
    Cui, Lizhen
    Li, Baoli
    Tang, Haihong
    PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 2561 - 2567
  • [50] Personalized Transfer of User Preferences for Cross-domain Recommendation
    Zhu, Yongchun
    Tang, Zhenwei
    Liu, Yudan
    Zhuang, Fuzhen
    Xie, Ruobing
    Zhang, Xu
    Lin, Leyu
    He, Qing
    WSDM'22: PROCEEDINGS OF THE FIFTEENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2022, : 1507 - 1515