Research on cost-sensitive learning in one-class anomaly detection algorithms

被引:0
|
作者
Luo, Jun [1 ]
Ding, Li [1 ]
Pan, Zhisong [1 ]
Ni, Guiqiang [1 ]
Hu, Guyu [1 ]
机构
[1] PLA Univ Sci & Technol, Inst Command Automat, Nanjing 210007, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
According to the Cost-Sensitive Learning Method, two improved One-Class Anomaly Detection Models using Support Vector Data Description (SVDD) are put forward in this paper. Improved Algorithm is included in the Frequency-Based SVDD (F-SVDD) Model while Input data division method is used in the Write-Related SVDD (W-SVDD) Model. Experimental results show that both of the two new models have a low false positive rate compared with the traditional one. The true positives increased by 22% and 23% while the False Positives decreased by 58% and 94%, which reaches nearly 100% and 0% respectively. And hence, adjusting some parameters can make the false positive rate better. So using Cost-Sensitive method in One-Class Problems may be a future orientation in Trusted Computing area.
引用
收藏
页码:259 / +
页数:2
相关论文
共 50 条
  • [31] Class-imbalanced time series anomaly detection method based on cost-sensitive hybrid network
    Wang, Xiaofeng
    Zhang, Ying
    Bai, Ningning
    Yu, Qinhua
    Wang, Qin
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [32] Steganography anomaly detection using simple one-class classification
    Rodriguez, Benjamin M.
    Peterson, Gilbert L.
    Agaian, Sos S.
    MOBILE MULTIMEDIA/IMAGE PROCESSING FOR MILITARY AND SECURITY APPLICATIONS 2007, 2007, 6579
  • [33] Deep Contrastive One-Class Time Series Anomaly Detection
    Wang, Rui
    Liu, Chongwei
    Mou, Xudong
    Gao, Kai
    Guo, Xiaohui
    Liu, Pin
    Wo, Tianyu
    Liu, Xudong
    PROCEEDINGS OF THE 2023 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2023, : 694 - 702
  • [34] Anomaly Detection using Clustered Deep One-Class Classification
    Kim, Younghwan
    Kim, Huy Kang
    2020 15TH ASIA JOINT CONFERENCE ON INFORMATION SECURITY (ASIAJCIS 2020), 2020, : 151 - 157
  • [35] GODS: Generalized One-class Discriminative Subspaces for Anomaly Detection
    Wang, Jue
    Cherian, Anoop
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 8200 - 8210
  • [36] ODD: ONE-CLASS ANOMALY DETECTION VIA THE DIFFUSION MODEL
    Wang, He
    Dai, Longquan
    Tong, Jinglin
    Zhai, Yan
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 3000 - 3004
  • [37] OCADaMi: One-Class Anomaly Detection and Data Mining Toolbox
    Theissler, Andreas
    Frey, Stephan
    Ehlert, Jens
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT III, 2020, 11908 : 764 - 768
  • [38] Video Anomaly Detection using Ensemble One-class Classifiers
    Li, Gang
    Feng, Zuren
    Lv, Na
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9343 - 9349
  • [39] Active anomaly detection based on deep one-class classification
    Kim, Minkyung
    Kim, Junsik
    Yu, Jongmin
    Choi, Jun Kyun
    PATTERN RECOGNITION LETTERS, 2023, 167 : 18 - 24
  • [40] Cost-Sensitive Active Learning for Intracranial Hemorrhage Detection
    Kuo, Weicheng
    Hane, Christian
    Yuh, Esther
    Mukherjee, Pratik
    Malik, Jitendra
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, PT III, 2018, 11072 : 715 - 723