Strategies towards Low-Cost Dual-Ion Batteries with High Performance

被引:295
|
作者
Zhou, Xiaolong [1 ]
Liu, Qirong [1 ]
Jiang, Chunlei [1 ]
Ji, Bifa [1 ]
Ji, XiuLei [3 ]
Tang, Yongbing [1 ]
Cheng, Hui-Ming [2 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Funct Thin Films Res Ctr, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Tsinghua Berkeley Shenzhen Inst, Shenzhen, Peoples R China
[3] Oregon State Univ, Dept Chem, Gilbert Hall 153, Corvallis, OR 97331 USA
基金
中国国家自然科学基金;
关键词
batteries; dual-ion batteries; electro chemistry; GRAPHITE-INTERCALATION COMPOUNDS; X-RAY-DIFFRACTION; LITHIUM-ION; IN-SITU; ANION INTERCALATION; ENERGY-STORAGE; ELECTROCHEMICAL INTERCALATION; ELECTRODE MATERIALS; ANODE MATERIAL; HEXAFLUOROPHOSPHATE ANION;
D O I
10.1002/anie.201814294
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Rocking-chair based lithium-ion batteries (LIBs) have extensively applied to consumer electronics and electric vehicles (EVs) for solving the present worldwide issues of fossil fuel exhaustion and environmental pollution. However, due to the growing unprecedented demand of LIBs for commercialization in EVs and grid-scale energy storage stations, and a shortage of lithium and cobalt, the increasing cost gives impetus to exploit low-cost rechargeable battery systems. Dual-ion batteries (DIBs), in which both cations and anions are involved in the electrochemical redox reaction, are one of the most promising candidates to meet the low-cost requirements of commercial applications, because of their high working voltage, excellent safety, and environmental friendliness compared to conventional rocking-chair based LIBs. However, DIB technologies are only at the stage of fundamental research and considerable effort is required to improve the energy density and cycle life further. We review the development history and current situation, and discuss the reaction kinetics involved in DIBs, including various anionic intercalation mechanism of cathodes, and the reactions at the anodes including intercalation and alloying to explore promising strategies towards low-cost DIBs with high performance.
引用
收藏
页码:3802 / 3832
页数:31
相关论文
共 50 条
  • [41] Aluminum electrolytes for Al dual-ion batteries
    Kostiantyn V. Kravchyk
    Maksym V. Kovalenko
    Communications Chemistry, 3
  • [42] A Review of Anode Materials for Dual-Ion Batteries
    Hongzheng Wu
    Shenghao Luo
    Hubing Wang
    Li Li
    Yaobing Fang
    Fan Zhang
    Xuenong Gao
    Zhengguo Zhang
    Wenhui Yuan
    Nano-Micro Letters, 2024, 16 (11) : 628 - 684
  • [43] A Review of Anode Materials for Dual-Ion Batteries
    Wu, Hongzheng
    Luo, Shenghao
    Wang, Hubing
    Li, Li
    Fang, Yaobing
    Zhang, Fan
    Gao, Xuenong
    Zhang, Zhengguo
    Yuan, Wenhui
    NANO-MICRO LETTERS, 2024, 16 (01)
  • [44] Organic Electrode Materials for Dual-Ion Batteries
    Tong, Yuhao
    Wei, Yuan
    Song, Ajing
    Ma, Yuanyuan
    Yang, Jianping
    CHEMSUSCHEM, 2024, 17 (07)
  • [45] Sodium Dual-Ion Batteries with Concentrated Electrolytes
    Guo, Zhenyu
    Cheng, Gang
    Xu, Zhen
    Xie, Fei
    Hu, Yong-Sheng
    Mattevi, Cecilia
    Titirici, Maria-Magdalena
    Ribadeneyra, Maria Crespo
    CHEMSUSCHEM, 2023, 16 (04)
  • [46] A Review on the Features and Progress of Dual-Ion Batteries
    Wang, Meng
    Tang, Yongbing
    ADVANCED ENERGY MATERIALS, 2018, 8 (19)
  • [47] High-abundance and low-cost anodes for sodium-ion batteries
    Dou, Yichuan
    Zhao, Lanling
    Liu, Yao
    Zhang, Zidong
    Zhang, Yiming
    Li, Ruifeng
    Liu, Xiaoqian
    Zhou, Ya
    Wang, Jiazhao
    Wang, Jun
    CARBON NEUTRALIZATION, 2024, 3 (06): : 954 - 995
  • [48] Sustainable Dual-Ion Batteries beyond Li
    Zhao, Zhiming
    Alshareef, Husam N.
    ADVANCED MATERIALS, 2024, 36 (07)
  • [49] Charge Carriers for Aqueous Dual-Ion Batteries
    Wang, Shaofeng
    Guan, Ying
    Gan, Fangqun
    Shao, Zongping
    CHEMSUSCHEM, 2023, 16 (04)
  • [50] Anion Hosting Cathodes in Dual-Ion Batteries
    Rodriguez-Perez, Ismael A.
    Ji, Xiulei
    ACS ENERGY LETTERS, 2017, 2 (08): : 1762 - 1770