Chromosome integrity in Saccharomyces cerevisiae:: the interplay of DNA replication initiation factors, elongation factors, and origins

被引:65
|
作者
Huang, DL
Koshland, D
机构
[1] Carnegie Inst Washington, Dept Embryol, Howard Hughes Med Inst, Baltimore, MD 21210 USA
[2] Johns Hopkins Univ, Dept Biol, Baltimore, MD 21218 USA
关键词
chromosome integrity; gross chromosomal rearrangements; origin recognition complex; genomic stability; mitotic chromosome condensation;
D O I
10.1101/gad.1089203
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The integrity of chromosomes during cell division is ensured by both trans-acting factors and cis-acting chromosomal sites. Failure of either these chromosome integrity determinants (CIDs) can cause chromosomes to be broken and subsequently misrepaired to form gross chromosomal rearrangements (GCRs). We developed a simple and rapid assay for GCRs, exploiting yeast artificial chromosomes (YACs) in Saccharomyces cerevisiae. We used this assay to screen a genome-wide pool of mutants for elevated rates of GCR. The analyses of these mutants define new CIDs (Orc3p, Orc5p, and Ycs4p) and new pathways required for chromosome integrity in DNA replication elongation (Dpb11p), DNA replication initiation (Orc3p and Orc5p), and mitotic condensation (Ycs4p). We show that the chromosome integrity function of Orc5p is associated with its ATP-binding motif and is distinct from its function in controlling the efficiency of initiation of DNA replication. Finally, we used our YAC assay to assess the interplay of trans and cis factors in chromosome integrity. Increasing the number of origins on a YAC suppresses GCR formation in our dpb11 mutant but enhances it in our orc mutants. This result provides potential insights into the counterbalancing selective pressures necessary for the evolution of origin density on chromosomes.
引用
收藏
页码:1741 / 1754
页数:14
相关论文
共 50 条
  • [21] Participation of translesion synthesis DNA polymerases in the maintenance of chromosome integrity in yeast Saccharomyces cerevisiae
    Kochenova, O. V.
    Soshkina, J. V.
    Stepchenkova, E. I.
    Inge-Vechtomov, S. G.
    Shcherbakova, P. V.
    BIOCHEMISTRY-MOSCOW, 2011, 76 (01) : 49 - 60
  • [22] Functional Centromeres Determine the Activation Time of Pericentric Origins of DNA Replication in Saccharomyces cerevisiae
    Pohl, Thomas J.
    Brewer, Bonita J.
    Raghuraman, M. K.
    PLOS GENETICS, 2012, 8 (05):
  • [23] RNA polymerase II elongation factors of Saccharomyces cerevisiae:: a targeted proteomnics approach
    Krogan, NJ
    Kim, M
    Ahn, SH
    Zhong, GQ
    Kobor, MS
    Cagney, G
    Emili, A
    Shilatifard, A
    Buratowski, S
    Greenblatt, JF
    MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (20) : 6979 - 6992
  • [24] Sequence analysis of origins of replication in the Saccharomyces cerevisiae genomes
    Li, Wen-Chao
    Zhong, Zhe-Jin
    Zhu, Pan-Pan
    Deng, En-Ze
    Ding, Hui
    Chen, Wei
    Lin, Hao
    FRONTIERS IN MICROBIOLOGY, 2014, 5
  • [25] Comprehensive Analysis of Replication Origins in Saccharomyces cerevisiae Genomes
    Wang, Dan
    Gao, Feng
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [26] Origins and complexes: the initiation of DNA replication
    Bryant, JA
    Moore, K
    Aves, SJ
    JOURNAL OF EXPERIMENTAL BOTANY, 2001, 52 (355) : 193 - 202
  • [27] Chromatin Constrains the Initiation and Elongation of DNA Replication
    Devbhandari, Sujan
    Jiang, Jieqing
    Kumar, Charanya
    Whitehouse, Iestyn
    Remus, Dirk
    MOLECULAR CELL, 2017, 65 (01) : 131 - 141
  • [28] A DNA integrity network in the yeast Saccharomyces cerevisiae
    Pan, XW
    Ye, P
    Yuan, DS
    Wang, XL
    Bader, JS
    Boeke, JD
    CELL, 2006, 124 (05) : 1069 - 1081
  • [29] Completion of replication map of Saccharomyces cerevisiae chromosome III
    Poloumienko, A
    Dershowitz, A
    De, J
    Newlon, CS
    MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (11) : 3317 - 3327
  • [30] Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae
    Yasumasa Tsukamoto
    Jun-ichi Kato
    Hideo Ikeda
    Nature, 1997, 388 : 900 - 903