Maximum Visibility: A Novel Approach for Time Series Forecasting Based on Complex Network Theory

被引:6
|
作者
De Souza Moreira, Filipe Rodrigues [1 ]
Neto Verri, Filipe Alves [2 ]
Yoneyama, Takashi [3 ]
机构
[1] Aeronaut Inst Technol ITA, Fundamental Sci Div IEF, BR-12228900 Sao Jose Dos Campos, Brazil
[2] Aeronaut Inst Technol ITA, Comp Sci Div IEC, BR-12228900 Sao Jose Dos Campos, Brazil
[3] Aeronaut Inst Technol ITA, Elect Engn Div IEE, BR-12228900 Sao Jose Dos Campos, Brazil
关键词
Time series analysis; Forecasting; Complex networks; Predictive models; Bars; Autocorrelation; Mathematical models; Time series forecasting; complex networks; visibility graph; forecasting model; MODEL;
D O I
10.1109/ACCESS.2022.3143106
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents Maximum Visibility Approach (MVA), a new time series forecasting method based on the Complex Network theory. MVA initially maps time series data into a complex network using the visibility graph method. Then, based on the similarity measures between the nodes in the network, MVA calculates the one-step-ahead forecasts. MVA does not use all past terms in the forecasting process, but only the most significant observations, which are indicated as a result of the autocorrelation function. This method was applied to five different groups of data, most of them showing trend characteristics, seasonal variations and/or non-stationary behavior. We calculated error measures to evaluate the performance of MVA. The results of statistical tests and error measures revealed that MVA has a good performance compared to the accuracy obtained by the benchmarks considered in this work. In all cases, MVA surpassed other forecasting methods in Literature, which confirms that this work will contribute to the field of time series forecasting not only in the theoretical aspect, but also in practice.
引用
收藏
页码:8960 / 8973
页数:14
相关论文
共 50 条
  • [21] Forecasting Construction Cost Index based on visibility graph: A network approach
    Zhang, Rong
    Ashuri, Baabak
    Shyr, Yu
    Deng, Yong
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2018, 493 : 239 - 252
  • [22] Complex Network Construction of Univariate Chaotic Time Series Based on Maximum Mean Discrepancy
    Sun, Jiancheng
    ENTROPY, 2020, 22 (02)
  • [23] Complex network approach to fractional time series
    Manshour, Pouya
    CHAOS, 2015, 25 (10)
  • [24] Architecture of Neural Network Complex for Forecasting and Analysis of Time Series based on the Neural Network Spectral Analysis
    Ivan, Tsmots
    Mykola, Medykovskyi
    Bohdan, Andriietskyi
    Oleksa, Skorokhoda
    PROCEEDINGS OF XIIITH INTERNATIONAL CONFERENCE - EXPERIENCE OF DESIGNING AND APPLICATION OF CAD SYSTEMS IN MICROELECTRONICS CADSM 2015, 2015, : 236 - 238
  • [25] Time series forecasting based on a novel ensemble-based network and variational mode decomposition
    Nazarieh, Fatemeh
    Dehkordi, Mohammad Naderi
    EXPERT SYSTEMS, 2023, 40 (07)
  • [26] A novel neural network ensemble architecture for time series forecasting
    Gheyas, Iffat A.
    Smith, Leslie S.
    NEUROCOMPUTING, 2011, 74 (18) : 3855 - 3864
  • [27] Neural network approach to forecasting of quasiperiodic financial time series
    Bodyanskiy, Yevgeniy
    Popov, Sergiy
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2006, 175 (03) : 1357 - 1366
  • [28] Image-based time series forecasting: A deep convolutional neural network approach
    Semenoglou, Artemios-Anargyros
    Spiliotis, Evangelos
    Assimakopoulos, Vassilios
    NEURAL NETWORKS, 2023, 157 : 39 - 53
  • [29] A neural-network-based nonlinear metamodeling approach to financial time series forecasting
    Yu, Lean
    Wang, Shouyang
    Lai, Kin Keung
    APPLIED SOFT COMPUTING, 2009, 9 (02) : 563 - 574
  • [30] PSO Based Neural Network for Time Series Forecasting
    Jha, Girish K.
    Thulasiraman, Parimala
    Thulasiram, Ruppa K.
    IJCNN: 2009 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1- 6, 2009, : 893 - 898