Some examples of Einstein-Weyl structures on almost contact manifolds

被引:7
|
作者
Matzeu, P [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat, I-09124 Cagliari, Italy
关键词
D O I
10.1088/0264-9381/17/24/309
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Einstein-Weyl structures are natural generalizations of Einstein structures within the framework of conformal geometry. In this paper, we show the existence of Einstein-Weyl structures on some classes of almost contact manifolds, including Sasakian and cosymplectic ones.
引用
收藏
页码:5079 / 5087
页数:9
相关论文
共 50 条
  • [21] Two dimensional Einstein-Weyl structures
    Calderbank, DMJ
    GLASGOW MATHEMATICAL JOURNAL, 2001, 43 : 419 - 424
  • [22] Einstein-Weyl structures on lightlike hypersurfaces
    Atindogbe, Cyriaque
    Berard-Bergery, Lionel
    Ogouyandjou, Carlos
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2013, 11 (10): : 1850 - 1862
  • [23] Weyl–Einstein structures on K-contact manifolds
    Paul Gauduchon
    Andrei Moroianu
    Geometriae Dedicata, 2017, 189 : 177 - 184
  • [24] Compact Einstein-Weyl manifolds with large symmetry group
    Madsen, AB
    Pedersen, H
    Poon, YS
    Swann, A
    DUKE MATHEMATICAL JOURNAL, 1997, 88 (03) : 407 - 434
  • [25] WEYL-PARALLEL FORMS, CONFORMAL PRODUCTS AND EINSTEIN-WEYL MANIFOLDS
    Belgun, Florin
    Moroianu, Andrei
    ASIAN JOURNAL OF MATHEMATICS, 2011, 15 (04) : 499 - 520
  • [26] Compact conformally Kähler Einstein-Weyl manifolds
    Włodzimierz Jelonek
    Annals of Global Analysis and Geometry, 2013, 43 : 19 - 29
  • [27] Compact Einstein-Weyl four-dimensional manifolds
    Bonneau, G
    CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (03) : 1057 - 1068
  • [28] CONFORMAL AND GENERALIZED CONCIRCULAR MAPPINGS OF EINSTEIN-WEYL MANIFOLDS
    Ozdeger, Abdulkadir
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (05) : 1739 - 1745
  • [29] CONFORMAL AND GENERALIZED CONCIRCULAR MAPPINGS OF EINSTEIN-WEYL MANIFOLDS
    Abdlkadir zdeger
    Acta Mathematica Scientia, 2010, 30 (05) : 1739 - 1745
  • [30] THE HITCHIN-THORPE INEQUALITY FOR EINSTEIN-WEYL MANIFOLDS
    PEDERSEN, H
    POON, YS
    SWANN, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1994, 26 : 191 - 194