Addressing bias in big data and AI for health care: A call for open science

被引:216
|
作者
Norori, Natalia [1 ,2 ]
Hu, Qiyang [1 ]
Aellen, Florence Marcelle [1 ]
Faraci, Francesca Dalia [3 ]
Tzovara, Athina [1 ,4 ,5 ]
机构
[1] Univ Bern, Inst Comp Sci, Neubruckstr 10, CH-3012 Bern, Switzerland
[2] Univ Bristol, Bristol Med Sch, Populat Hlth Sci, Bristol BS8 1UD, Avon, England
[3] Univ Appl Sci & Arts Southern Switzerland, Inst Digital Technol Personalized Hlthcare MeDi, Dept Innovat Technol, CH-6962 Lugano, Switzerland
[4] Univ Bern, Univ Hosp Bern, Dept Neurol, Sleep Wake Epilepsy Ctr NeuroTec, CH-3010 Bern, Switzerland
[5] Univ Calif Berkeley, Helen Wills Neurosci Inst, Berkeley, CA 94720 USA
来源
PATTERNS | 2021年 / 2卷 / 10期
基金
瑞士国家科学基金会;
关键词
GENDER-DIFFERENCES; RACIAL BIAS; DISPARITIES; DIVERSITY; SEX;
D O I
10.1016/j.patter.2021.100347
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Artificial intelligence (AI) has an astonishing potential in assisting clinical decision making and revolutionizing the field of health care. A major open challenge that AI will need to address before its integration in the clinical routine is that of algorithmic bias. Most AI algorithms need big datasets to learn from, but several groups of the human population have a long history of being absent or misrepresented in existing biomedical datasets. If the training data is misrepresentative of the population variability, AI is prone to reinforcing bias, which can lead to fatal outcomes, misdiagnoses, and lack of generalization. Here, we describe the challenges in rendering AI algorithms fairer, and we propose concrete steps for addressing bias using tools from the field of open science.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Addressing AI Algorithmic Bias in Health Care
    Ratwani, Raj M.
    Sutton, Karey
    Galarraga, Jessica E.
    JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2024, 332 (13): : 1051 - 1052
  • [2] Big data and AI for gender equality in health: bias is a big challenge
    Joshi, Anagha
    FRONTIERS IN BIG DATA, 2024, 7
  • [3] Big data: An inclusive science platform to improve health and health care
    Tummers, Joep
    Schalk, Bianca
    Tobi, Hilde
    Leusink, Geraline
    Tekinerdogan, Bedir
    JOURNAL OF APPLIED RESEARCH IN INTELLECTUAL DISABILITIES, 2021, 34 (05) : 1301 - 1301
  • [4] Accelerating AI for science: open data science for science
    Lawrence, Neil D.
    Montgomery, Jessica
    ROYAL SOCIETY OPEN SCIENCE, 2024, 11 (08):
  • [5] A Deep-Big Data Approach to Health Care in the AI Age
    José Neves
    Henrique Vicente
    Marisa Esteves
    Filipa Ferraz
    António Abelha
    José Machado
    Joana Machado
    João Neves
    Jorge Ribeiro
    Lúzia Sampaio
    Mobile Networks and Applications, 2018, 23 : 1123 - 1128
  • [6] A Deep-Big Data Approach to Health Care in the AI Age
    Neves, Jose
    Vicente, Henrique
    Esteves, Marisa
    Ferraz, Filipa
    Abelha, Antonio
    Machado, Jose
    Machado, Joana
    Neves, Joao
    Ribeiro, Jorge
    Sampaio, Luzia
    MOBILE NETWORKS & APPLICATIONS, 2018, 23 (04): : 1123 - 1128
  • [7] A call to action: Engage in big data science
    Clancy, Thomas R.
    Bowles, Kathryn H.
    Gelinas, Lillee
    Androwich, Ida
    Delaney, Connie
    Matney, Susan
    Sensmeier, Joyce
    Warren, Judith
    Welton, John
    Westra, Bonnie
    NURSING OUTLOOK, 2014, 62 (01) : 64 - 65
  • [8] OPEN DATA AND OPEN CODE FOR BIG SCIENCE OF SCIENCE STUDIES
    Light, Robert P.
    Polley, David E.
    Boerner, Katy
    14TH INTERNATIONAL SOCIETY OF SCIENTOMETRICS AND INFORMETRICS CONFERENCE (ISSI), 2013, : 1342 - 1356
  • [9] Open data and open code for big science of science studies
    Robert P. Light
    David E. Polley
    Katy Börner
    Scientometrics, 2014, 101 : 1535 - 1551
  • [10] Open data and open code for big science of science studies
    Light, Robert P.
    Polley, David E.
    Boerner, Katy
    SCIENTOMETRICS, 2014, 101 (02) : 1535 - 1551