The Minimum Stretch Spanning Tree Problem for Typical Graphs

被引:1
|
作者
Lin, Lan [1 ]
Lin, Yi-xun [2 ]
机构
[1] Tongji Univ, Sch Elect & Informat Engn, Shanghai 200092, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R China
来源
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES | 2021年 / 37卷 / 03期
基金
国家重点研发计划;
关键词
communication network; spanning tree optimization; tree spanner; max-stretch; congestion; CONGESTION; SPANNERS; COMPLEXITY; INTERVAL;
D O I
10.1007/s10255-021-1028-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
With applications in communication networks, the minimum stretch spanning tree problem is to find a spanning tree T of a graph G such that the maximum distance in T between two adjacent vertices is minimized. The problem has been proved NP-hard and fixed-parameter polynomial algorithms have been obtained for some special families of graphs. In this paper, we concentrate on the optimality characterizations for typical classes of graphs. We determine the exact formulae for the complete k-partite graphs, split graphs, generalized convex graphs, and several planar grids, including rectangular grids, triangular grids, and triangulated-rectangular grids.
引用
收藏
页码:510 / 522
页数:13
相关论文
共 50 条
  • [21] The minimum risk spanning tree problem
    Chen, Xujin
    Hu, Jie
    Hu, Xiaodong
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, PROCEEDINGS, 2007, 4616 : 81 - +
  • [22] THE PROBABILISTIC MINIMUM SPANNING TREE PROBLEM
    BERTSIMAS, DJ
    NETWORKS, 1990, 20 (03) : 245 - 275
  • [23] THE QUADRATIC MINIMUM SPANNING TREE PROBLEM
    ASSAD, A
    XU, WX
    NAVAL RESEARCH LOGISTICS, 1992, 39 (03) : 399 - 417
  • [24] The Distributed Minimum Spanning Tree Problem
    Schmid, Stefan
    Pandurangan, Gopal
    Robinson, Peter
    Scquizzato, Michele
    BULLETIN OF THE EUROPEAN ASSOCIATION FOR THEORETICAL COMPUTER SCIENCE, 2018, (125): : 51 - 80
  • [25] The Minimum Moving Spanning Tree Problem
    Akitaya H.A.
    Biniaz A.
    Bose P.
    De Carufel J.-L.
    Maheshwari A.
    da Silveira L.F.S.X.
    Smid M.
    Journal of Graph Algorithms and Applications, 2023, 27 (01) : 1 - 18
  • [26] The minimum spanning tree problem in archaeology
    Hage, P
    Harary, F
    James, B
    AMERICAN ANTIQUITY, 1996, 61 (01) : 149 - 155
  • [27] ON THE MINIMUM DIAMETER SPANNING TREE PROBLEM
    HASSIN, R
    TAMIR, A
    INFORMATION PROCESSING LETTERS, 1995, 53 (02) : 109 - 111
  • [28] The Minimum Moving Spanning Tree Problem
    Akitaya, Hugo A.
    Biniaz, Ahmad
    Bose, Prosenjit
    De Carufel, Jean-Lou
    Maheshwari, Anil
    da Silveira, Luis Fernando Schultz Xavier
    Smid, Michiel
    ALGORITHMS AND DATA STRUCTURES, WADS 2021, 2021, 12808 : 15 - 28
  • [29] The first approximated distributed algorithm for the Minimum Degree Spanning Tree problem on general graphs
    Blin, L
    Butelle, F
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2004, 15 (03) : 507 - 516
  • [30] Critical Random Graphs and the Structure of a Minimum Spanning Tree
    Addario-Berry, L.
    Broutin, N.
    Reed, B.
    RANDOM STRUCTURES & ALGORITHMS, 2009, 35 (03) : 323 - 347