Asymptotic theory for maximum likelihood estimates in reduced-rank multivariate generalized linear models

被引:4
|
作者
Bura, E. [1 ,2 ]
Duarte, S. [3 ]
Forzani, L. [3 ]
Smucler, E. [4 ,5 ]
Sued, M. [5 ]
机构
[1] TU Wien, Inst Stat & Math Methods Econ, A-1040 Vienna, Austria
[2] George Washington Univ, Dept Stat, Washington, DC 20052 USA
[3] UNL, Fac Ingn Quim, Santa Fe, Argentina
[4] Univ British Columbia, Dept Stat, Vancouver, BC, Canada
[5] UBA, Inst Calculo, Buenos Aires, DF, Argentina
基金
奥地利科学基金会;
关键词
M-estimation; exponential family; rank restriction; non-convex; parameter spaces;
D O I
10.1080/02331888.2018.1467420
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Reduced-rank regression is a dimensionality reduction method with many applications. The asymptotic theory for reduced rank estimators of parameter matrices in multivariate linear models has been studied extensively. In contrast, few theoretical results are available for reduced-rank multivariate generalized linear models. We develop M-estimation theory for concave criterion functions that are maximized over parameter spaces that are neither convex nor closed. These results are used to derive the consistency and asymptotic distribution of maximum likelihood estimators in reduced-rank multivariate generalized linear models, when the response and predictor vectors have a joint distribution. We illustrate our results in a real data classification problem with binary covariates.
引用
收藏
页码:1005 / 1024
页数:20
相关论文
共 50 条