ON THE PROBABILISTIC WELL-POSEDNESS OF THE NONLINEAR SCHRODINGER EQUATIONS WITH NON-ALGEBRAIC NONLINEARITIES

被引:23
|
作者
Oh, Tadahiro [1 ,2 ]
Okamoto, Mamoru [3 ]
Pocovnicu, Oana [4 ,5 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Shinshu Univ, Fac Engn, Div Math & Phys, 4-17-1 Wakasato, Nagano 3808553, Japan
[4] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[5] Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
Nonlinear Schrodinger equation; almost sure local well-posedness; almost sure global well-posedness; finite time blowup; non-algebraic nonlinearity; NAVIER-STOKES EQUATIONS; DATA CAUCHY-PROBLEM; DATA BLOW-UP; WAVE-EQUATIONS; INITIAL DATA; SCATTERING; SERIES;
D O I
10.3934/dcds.2019144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the nonlinear Schrodinger equations (NLS) with non-algebraic nonlinearities on the Euclidean space. In particular, we study the energy-critical NLS on R-d , d = 5, 6, and energy-critical NLS without gauge invariance and prove that they are almost surely locally well-posed with respect to randomized initial data below the energy space. We also study the long time behavior of solutions to these equations: (i) we prove almost sure global well-posedness of the (standard) energy-critical NLS on R-d , d = 5, 6, in the defocusing case, and (ii) we present a probabilistic construction of finite time blowup solutions to the energy-critical NLS without gauge invariance below the energy space.
引用
收藏
页码:3479 / 3520
页数:42
相关论文
共 50 条
  • [41] Well-posedness and scattering for nonlinear Schrodinger equations on Rd x T in the energy space
    Tzvetkov, Nikolay
    Visciglia, Nicola
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (04) : 1163 - 1188
  • [42] An Lp-theory for almost sure local well-posedness of the nonlinear Schrodinger equations
    Pocovnicu, Oana
    Wang, Yuzhao
    COMPTES RENDUS MATHEMATIQUE, 2018, 356 (06) : 637 - 643
  • [43] WELL-POSEDNESS ISSUES FOR A CLASS OF COUPLED NONLINEAR SCHRODINGER EQUATIONS WITH CRITICAL EXPONENTIAL GROWTH
    Hezzi, Hanen
    ADVANCES IN OPERATOR THEORY, 2018, 3 (03): : 551 - 581
  • [44] Well-Posedness and Scattering for Nonlinear Schrodinger Equations with a Derivative Nonlinearity at the Scaling Critical Regularity
    Hirayama, Hiroyuki
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2015, 58 (03): : 431 - 450
  • [45] On well-posedness for nonlinear Schrodinger equations with power nonlinearity in fractional order Sobolev spaces
    Uchizono, Harunori
    Wada, Takeshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 395 (01) : 56 - 62
  • [46] GLOBAL WELL-POSEDNESS OF SEMILINEAR HYPERBOLIC EQUATIONS, PARABOLIC EQUATIONS AND SCHRODINGER EQUATIONS
    Xu, Runzhang
    Chen, Yuxuan
    Yang, Yanbing
    Chen, Shaohua
    Shen, Jihong
    Yu, Tao
    Xu, Zhengsheng
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [47] On the well-posedness for stochastic fourth-order Schrodinger equations
    Fang Dao-yuan
    Zhang Lin-zi
    Zhang Ting
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (03) : 307 - 318
  • [48] Unconditional well-posedness for semilinear Schrodinger and wave equations in Hs
    Furioli, G
    Planchon, F
    Terraneo, E
    HARMONIC ANALYSIS AT MOUNT HOLYOKE, 2003, 320 : 147 - 156
  • [49] A refined global well-posedness result for Schrodinger equations with derivative
    Colliander, J
    Keel, M
    Staffilani, G
    Takaoka, H
    Tao, T
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2002, 34 (01) : 64 - 86
  • [50] Some Remarks on Gevrey Well-Posedness for Degenerate Schrodinger Equations
    Cicognani, Massimo
    Reissig, Michael
    COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS VI, PT 1: PDE, DIFFERENTIAL GEOMETRY, RADON TRANSFORM, 2015, 653 : 81 - 91