ON THE PROBABILISTIC WELL-POSEDNESS OF THE NONLINEAR SCHRODINGER EQUATIONS WITH NON-ALGEBRAIC NONLINEARITIES

被引:23
|
作者
Oh, Tadahiro [1 ,2 ]
Okamoto, Mamoru [3 ]
Pocovnicu, Oana [4 ,5 ]
机构
[1] Univ Edinburgh, Sch Math, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[2] Maxwell Inst Math Sci, James Clerk Maxwell Bldg,Kings Bldg, Edinburgh EH9 3FD, Midlothian, Scotland
[3] Shinshu Univ, Fac Engn, Div Math & Phys, 4-17-1 Wakasato, Nagano 3808553, Japan
[4] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[5] Maxwell Inst Math Sci, Edinburgh EH14 4AS, Midlothian, Scotland
基金
欧洲研究理事会;
关键词
Nonlinear Schrodinger equation; almost sure local well-posedness; almost sure global well-posedness; finite time blowup; non-algebraic nonlinearity; NAVIER-STOKES EQUATIONS; DATA CAUCHY-PROBLEM; DATA BLOW-UP; WAVE-EQUATIONS; INITIAL DATA; SCATTERING; SERIES;
D O I
10.3934/dcds.2019144
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Cauchy problem for the nonlinear Schrodinger equations (NLS) with non-algebraic nonlinearities on the Euclidean space. In particular, we study the energy-critical NLS on R-d , d = 5, 6, and energy-critical NLS without gauge invariance and prove that they are almost surely locally well-posed with respect to randomized initial data below the energy space. We also study the long time behavior of solutions to these equations: (i) we prove almost sure global well-posedness of the (standard) energy-critical NLS on R-d , d = 5, 6, in the defocusing case, and (ii) we present a probabilistic construction of finite time blowup solutions to the energy-critical NLS without gauge invariance below the energy space.
引用
收藏
页码:3479 / 3520
页数:42
相关论文
共 50 条
  • [1] The well-posedness for fractional nonlinear Schrodinger equations
    Peng, Li
    Zhou, Yong
    Ahmad, Bashir
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (07) : 1998 - 2005
  • [2] Global well-posedness and scattering for nonlinear Schrodinger equations with combined nonlinearities in the radial case
    Cheng, Xing
    Miao, Changxing
    Zhao, Lifeng
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 2881 - 2934
  • [3] Well-posedness of dispersion managed nonlinear Schrodinger equations
    Choi, Mi-Ran
    Hundertmark, Dirk
    Lee, Young -Ran
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 522 (01)
  • [4] Global Well-Posedness of the Derivative Nonlinear Schrodinger Equations on T
    Win, Yin Yin Su
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2010, 53 (01): : 51 - 88
  • [5] Small data well-posedness for derivative nonlinear Schrodinger equations
    Pornnopparath, Donlapark
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3792 - 3840
  • [6] WELL-POSEDNESS AND SMOOTHING EFFECT FOR GENERALIZED NONLINEAR SCHRODINGER EQUATIONS
    Bienaime, Pierre-Yves
    Boulkhemair, Abdesslam
    ANALYSIS & PDE, 2018, 11 (05): : 1241 - 1284
  • [7] WELL-POSEDNESS FOR DEGENERATE SCHRODINGER EQUATIONS
    Cicognani, Massimo
    Reissig, Michael
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2014, 3 (01): : 15 - 33
  • [8] New examples of probabilistic well-posedness for nonlinear wave equations
    Sun, Chenmin
    Tzvetkov, Nikolay
    JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 278 (02)
  • [9] THE WELL-POSEDNESS OF NONLINEAR SCHRODINGER EQUATIONS IN TRIEBEL-TYPE SPACES
    Ru, Shaolei
    Chen, Jiecheng
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 274 (02) : 325 - 354
  • [10] A REMARK ON THE WELL-POSEDNESS FOR A SYSTEM OF QUADRATIC DERIVATIVE NONLINEAR SCHRODINGER EQUATIONS
    Hirayama, Hiroyuki
    Kinoshita, Shinya
    Okamoto, Mamoru
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022,