SMALL ON-LINE RAMSEY NUMBERS - A NEW APPROACH

被引:0
|
作者
Gordinowicz, Przemyslaw [1 ]
Pralat, Pawel [2 ]
机构
[1] Lodz Univ Technol, Inst Math, Lodz, Poland
[2] Ryerson Univ, Dept Math, Toronto, ON M5B 2K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
on-line Ramsey number; size Ramsey number; PATHS; GAMES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note, we revisit the problem of calculating small on-line Ramsey numbers (R) over bar (G, H). A new approach is proposed that reduces the running time of the algorithm determining that (R) over bar (K-3, K-4) = 17 by a factor of at least 2 . 10(6) compared to the previously used approach. Using high performance computing networks, we determined that (R) over bar (K-4, K-4) >= 26, (R) over bar (K-3, K-5) >= 25, and that (K-3, K-3, K-3) >= 20 for a natural generalization to three colours. All graphs on 3 or 4 vertices are investigated as well, including nonsymmetric cases.
引用
收藏
页码:101 / 111
页数:11
相关论文
共 50 条
  • [31] Anti-Ramsey numbers of small graphs
    Bialostocki, Arie
    Gilboa, Shoni
    Roditty, Yehuda
    ARS COMBINATORIA, 2015, 123 : 41 - 53
  • [32] A new approach to interactive on-line mapping
    Mancilla, B
    HUMAN-COMPUTER INTERACTION - INTERACT'01, 2001, : 644 - 647
  • [33] Lower Bounds for Small Ramsey Numbers on Hypergraphs
    Liu, S. Cliff
    COMPUTING AND COMBINATORICS, COCOON 2019, 2019, 11653 : 412 - 424
  • [34] ON ZERO SUM RAMSEY NUMBERS - SMALL GRAPHS
    BIALOSTOCKI, A
    DIERKER, P
    ARS COMBINATORIA, 1990, 29A : 193 - 198
  • [35] LOWER BOUNDS FOR SMALL DIAGONAL RAMSEY NUMBERS
    SHEARER, JB
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1986, 42 (02) : 302 - 304
  • [36] Three color Ramsey numbers for small graphs
    Arste, J
    Klamroth, K
    Mengersen, I
    UTILITAS MATHEMATICA, 1996, 49 : 85 - 96
  • [37] Ramsey numbers for trees of small maximum degree
    Haxell, PE
    Luczak, T
    Tingley, PW
    COMBINATORICA, 2002, 22 (02) : 287 - 320
  • [38] Ramsey Numbers for Trees of Small Maximum Degree
    P. E. Haxell
    T. Łuczak
    P. W. Tingley
    Combinatorica, 2002, 22 : 287 - 320
  • [39] Ramsey numbers for bipartite graphs with small bandwidth
    Mota, G. O.
    Sarkoezy, G. N.
    Schacht, M.
    Taraz, A.
    EUROPEAN JOURNAL OF COMBINATORICS, 2015, 48 : 165 - 176
  • [40] Avoidance colourings for small nonclassical Ramsey numbers
    Burger, A. P.
    van Vuuren, J. H.
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2011, 13 (02): : 81 - 96