共 50 条
ZnCdS/NiAl hydrotalcite S-scheme heterojunction for efficient photocatalytic hydrogen evolution
被引:64
|作者:
Zheng, Chaoyue
[1
]
Jiang, Guoping
[1
]
Jin, Zhiliang
[1
]
机构:
[1] North Minzu Univ, Sch Chem & Chem Engn, Ningxia Key Lab Solar Chem Convers Technol, State Ethn Affairs Commiss,Key Lab Chem Engn & Te, Yinchuan 750021, Ningxia, Peoples R China
关键词:
ZnCdS;
NiAl LDH;
Heterojunction;
Photocatalysis;
H-2
evolution;
COCATALYST;
D O I:
10.1016/j.ijhydene.2021.10.032
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
ZnCdS/NiAl hydrotalcite S-scheme heterojunction with highly effective photocatalytic hydrogen evolution activity was devised and prepared by a simple solution-based mixing way. Layered double hydroxide (LDH), also called hydrotalcite-like compound, is composed of adjustable metal cations and exchangeable anions between layers. The hydrogen evolution performance of ZnCdS/NiAl LDH is about 7 times that of ZnCdS and 130 times that of NiAl LDH. Because the rod-shaped ZnCdS and the layered NiAl LDH can construct close interface contact. This interface contact helps to accelerate charge transfer, thereby achieving more effective photocatalytic hydrogen evolution. The S-scheme ZnCdS/NiAl LDH heterojunction catalyst shows excellent hydrogen evolution and good stability, which not only gets benefits from the prominent performances of the cob-like ZnCdS and the layered NiAl LDH but also the matching bandgap structure for them. The configuration of the S-scheme ZnCdS/NiAl LDH heterojunction catalyst accelerates the rapid charge movement and inhibits the recombination of charge carriers, thereby greatly enhancing visible-light-driven water splitting, which is corroborated by the PL spectrum, I-T, LSV, EIS, MottSchottky and UV-vis DRS studies, etc. (c) 2021 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:292 / 304
页数:13
相关论文