Detecting functional relationships between simultaneous time series

被引:0
|
作者
Goodridge, CL [1 ]
Pecora, LM [1 ]
Carroll, TL [1 ]
Rachford, FJ [1 ]
机构
[1] USN, Res Lab, Washington, DC 20375 USA
来源
PHYSICAL REVIEW E | 2001年 / 64卷 / 02期
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We describe a method to characterize the predictability and functionality between two simultaneously generated time series. This nonlinear method requires minimal assumptions and can be applied to data measured either from coupled systems or from different positions on a spatially extended system. This analysis generates a function statistic, Theta (c)o, that quantifies the level of predictability between two time series. We illustrate the utility of this procedure by presenting results from a computer simulation and two experimental systems.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] DETECTING HIDDEN RELATIONS BETWEEN TIME-SERIES OF MORTALITY-RATES
    HELFENSTEIN, U
    METHODS OF INFORMATION IN MEDICINE, 1990, 29 (01) : 57 - 60
  • [32] Detecting chaos from a time series
    Kodba, S
    Perc, M
    Marhl, M
    EUROPEAN JOURNAL OF PHYSICS, 2005, 26 (01) : 205 - 215
  • [33] Detecting Rhythms in Time Series with RAIN
    Thaben, Paul F.
    Westermark, Pal O.
    JOURNAL OF BIOLOGICAL RHYTHMS, 2014, 29 (06) : 391 - 400
  • [34] DETECTING CHAOS IN TIME-SERIES
    SERIO, C
    FRACTALS IN THE NATURAL AND APPLIED SCIENCES, 1994, 41 : 371 - 383
  • [35] DETECTING TRENDS IN TWITTER TIME SERIES
    De Bie, Tijl
    Lijffijt, Jefrey
    Mesnage, Cedric
    Santos-Rodriguez, Raul
    2016 IEEE 26TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2016,
  • [36] DETECTING NONLINEARITY IN TIME-SERIES
    DAVIES, N
    PETRUCCELLI, JD
    STATISTICIAN, 1986, 35 (02): : 271 - 280
  • [37] DETECTING NONLINEARITIES IN STATIONARY TIME SERIES
    Takens, Floris
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02): : 241 - 256
  • [38] Detecting nonlinearity in multivariate time series
    Palus, M
    PHYSICS LETTERS A, 1996, 213 (3-4) : 138 - 147
  • [39] Detecting smoothness in noisy time series
    Cawley, R
    Hsu, GH
    Salvino, LW
    CHAOTIC, FRACTAL, AND NONLINEAR SIGNAL PROCESSING, 1996, (375): : 55 - 67
  • [40] DETECTING CHANGE IN A TIME-SERIES
    SEGEN, J
    SANDERSON, AC
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1980, 26 (02) : 249 - 255