Seam Carving Detection Using Convolutional Neural Networks

被引:0
|
作者
da Silva Cieslak, Luiz Fernando [1 ]
Pontara da Costa, Kelton Augusto [1 ]
Papa, Joao Paulo [1 ]
机构
[1] Sao Paulo State Univ, UNESP, BR-17033360 Bauru, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Deep Learning; Convolutional Neural Networks; Seam Carving; Computer Forensics;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning techniques have been widely used in the recent years, primarily because of their efficiency in several applications, such as engineering, medicine, and data security. Seam carving is a content-aware image resizing method that can also be used for image tampering, being not straightforward to be identified. In this paper, we combine Convolutional Neural Networks and Local Binary Patterns to recognize whether an image has been modified automatically or not by seam carving. The experimental results show that the proposed approach can achieve accuracies within the range [81% - 98%] depending on the severity of the tampering procedure.
引用
收藏
页码:195 / 199
页数:5
相关论文
共 50 条
  • [22] Microaneurysm detection using fully convolutional neural networks
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 185 - 192
  • [23] Fall detection using mixtures of convolutional neural networks
    Thao V. Ha
    Hoang M. Nguyen
    Son H. Thanh
    Binh T. Nguyen
    Multimedia Tools and Applications, 2024, 83 : 18091 - 18118
  • [24] Facial Smile Detection Using Convolutional Neural Networks
    Dinh Viet Sang
    Le Tran Bao Cuong
    Do Phan Thuan
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 136 - 141
  • [25] Stroke Lesion Detection Using Convolutional Neural Networks
    Pereira, Danillo Roberto
    Reboucas Filho, Pedro P.
    de Rosa, Gustavo Henrique
    Papa, Joao Paulo
    de Albuquerque, Victor Hugo C.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [26] Android Botnet Detection using Convolutional Neural Networks
    Hojjatinia, Sina
    Hamzenejadi, Sajad
    Mohseni, Hadis
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 674 - 679
  • [27] Periodontal Disease Detection Using Convolutional Neural Networks
    Joo, Jaehan
    Jeong, Sinjin
    Jin, Heetae
    Lee, Uhyeon
    Yoon, Ji Young
    Kim, Suk Chan
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 360 - 362
  • [28] Clothes Detection and Classification Using Convolutional Neural Networks
    Cychnerski, Jan
    Brzeski, Adam
    Boguszewski, Adrian
    Marmolowski, Mateusz
    Trojanowicz, Marek
    2017 22ND IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2017,
  • [29] Detection of magnetohydrodynamic waves by using convolutional neural networks
    Chen, Fang
    Samtaney, Ravi
    PHYSICS OF FLUIDS, 2022, 34 (10)
  • [30] Shot Boundary Detection Using Convolutional Neural Networks
    Xu, Jingwei
    Song, Li
    Xie, Rong
    2016 30TH ANNIVERSARY OF VISUAL COMMUNICATION AND IMAGE PROCESSING (VCIP), 2016,