An automated apparatus for conditioning proboscis extension in honey bees, Apis mellifera L.

被引:22
|
作者
Abramson, CI [1 ]
Boyd, BJ
机构
[1] Oklahoma State Univ, Dept Psychol, Lab Comparat Psychol & Behav Biol, Dept Psychol, Stillwater, OK 74078 USA
[2] Oklahoma State Univ, Dept Psychol, Lab Comparat Psychol & Behav Biol, Dept Zool, Stillwater, OK 74078 USA
关键词
honey bee; learning; proboscis extension; automation;
D O I
10.18474/0749-8004-36.1.78
中图分类号
Q96 [昆虫学];
学科分类号
摘要
An apparatus is described for the study of classical conditioning of proboscis extension in harnessed honey bees, Apis mellifera L., that permits automatic programming of events and recording of data. The apparatus is easy to use, accommodates a wide range of stimuli and can be used to study both associative and nonassociative learning. The technique was evaluated in a series of experiments in which the performance of bees was compared under automated and traditional methods of conditioning. The results indicated that the automated apparatus can successfully be used to study Pavlovian conditioning, discrimination learning, and habituation. A unique finding was that the odor of honeycomb can serve as an unconditioned stimulus to support Pavlovian conditioning.
引用
收藏
页码:78 / 92
页数:15
相关论文
共 50 条
  • [31] Tactile learning and the individual evaluation of the reward in honey bees (Apis mellifera L.)
    Scheiner, R
    Erber, J
    Page, RE
    JOURNAL OF COMPARATIVE PHYSIOLOGY A-NEUROETHOLOGY SENSORY NEURAL AND BEHAVIORAL PHYSIOLOGY, 1999, 185 (01): : 1 - 10
  • [32] Determination of the Africanized mitotypes in populations of honey bees (Apis mellifera L.) of Colombia
    Manuel Tibata, Victor
    Arias, Edgar
    Corona, Miguel
    Ariza Botero, Fernando
    Figueroa-Ramirez, Judith
    Junca, Howard
    JOURNAL OF APICULTURAL RESEARCH, 2018, 57 (02) : 219 - 227
  • [33] Unique features of flight muscles mitochondria of honey bees (Apis mellifera L.)
    Syromyatnikov, Mikhail Y.
    Gureev, Artem P.
    Vitkalova, Inna Y.
    Starkov, Anatoly A.
    Popov, Vasily N.
    ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY, 2019, 102 (01)
  • [34] Genetic bases of tolerance to Varroa destructor in honey bees (Apis mellifera L.)
    E. Zakar
    A. Jávor
    Sz. Kusza
    Insectes Sociaux, 2014, 61 : 207 - 215
  • [35] Diversity in life history of queen and worker honey bees, Apis mellifera L.
    Wang, Ying
    Ma, Lan-Ting
    Xu, Bao-Hua
    JOURNAL OF ASIA-PACIFIC ENTOMOLOGY, 2015, 18 (02) : 145 - 149
  • [36] Phototactic behaviour correlates with gustatory responsiveness in honey bees (Apis mellifera L.)
    Erber, J.
    Hoormann, J.
    Scheiner, R.
    BEHAVIOURAL BRAIN RESEARCH, 2006, 174 (01) : 174 - 180
  • [37] Drawbacks and benefits of hygienic behavior in honey bees (Apis mellifera L.): a review
    Leclercq, Gil
    Pannebakker, Bart
    Gengler, Nicolas
    Nguyen, Bach Kim
    Francis, Frederic
    JOURNAL OF APICULTURAL RESEARCH, 2017, 56 (04) : 366 - 375
  • [38] The attraction of Africanized honey bees (Apis mellifera L.) to soft drinks and perfumes
    Abramson, CI
    Aquino, IS
    Azeredo, GA
    Filho, JRM
    Price, JM
    JOURNAL OF GENERAL PSYCHOLOGY, 1997, 124 (02): : 166 - 181
  • [39] Protein trophallaxis and the regulation of pollen foraging by honey bees (Apis mellifera L.)
    Camazine, S
    Crailsheim, K
    Hrassnigg, N
    Robinson, GE
    Leonhard, B
    Kropiunigg, H
    APIDOLOGIE, 1998, 29 (1-2) : 113 - 126
  • [40] REVIEW OF THE EXPRESSION OF ANTIMICROBIAL PEPTIDE DEFENSIN IN HONEY BEES APIS MELLIFERA L.
    Ilyasov, Rustem A.
    Gaifullina, Louisa R.
    Saltykova, Elena S.
    Poskryakov, Aleksandr V.
    Nikolenko, Alexei G.
    JOURNAL OF APICULTURAL SCIENCE, 2012, 56 (01) : 115 - 124