During systemic acidosis, renal proximal tubular cells exhibit enhanced rates of bicarbonate and ammonium ion synthesis and undergo extensive hypertrophy. The former adaptations are accomplished, in part, by increased expression of glutaminase (GA). LLC-PK1-FBPase(+) cells, a gluconeogenic line of porcine kidney cells, exhibit a rapid activation of the ERK1/2 and p38 MAPK pathways and a two- to threefold increase in GA mRNA when transferred to acidic medium ( pH 6.9). Transforming growth factor-beta (TGF-beta), a potent activator of MAPK and Smad signaling cascades, also causes extensive renal hypertrophy. Thus the potential role of TGF-beta in the renal response to metabolic acidosis was investigated. Western blot analyses established that in LLC-PK1-FBPase(+) cells, TGF-beta activated the ERK1/2, p38 MAPK, and Smad1/5/8 pathways, but not the JNK and Smad2/3 pathways. Addition of TGF-beta to cells cultured in normal medium (pH 7.4) produced a steady increase in GA mRNA, resulting in a twofold induction after 18 h. Western blot analysis indicated that treatment with either TGF-beta or acidic medium resulted in an increased level of fibronectin. However, the effects of the two treatments on both GA mRNA and fibronectin levels occurred with different time courses and were additive. In addition, the rates of ammonia production were decreased slightly by addition of TGF-beta. Finally, a GA-luciferase reporter construct, which is activated 3.5-fold by treatment with acidic medium, is not affected by TGF-beta. Therefore, TGF-beta and metabolic acidosis activate some of the same signaling pathways in LLC- PK1-FBPase(+) cells, but produce separate effects on GA expression.