Unsupervised image translation

被引:0
|
作者
Rosales, R [1 ]
Achan, K [1 ]
Frey, B [1 ]
机构
[1] Univ Toronto, Probabilist & Stat Inference Lab, Toronto, ON, Canada
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An interesting and potentially useful vision/graphics task is to render an input image in an enhanced form or also in an unusual style; for example with increased sharpness or with some artistic qualities. In previous work [10, 5], researchers showed that by estimating the mapping from an input image to a registered (aligned) image of the same scene in a different style or resolution, the mapping could be used to render a new input image in that style or resolution. Frequently a registered pair is not available, but instead the user may have only a source image of an unrelated scene that contains the desired style. In this case, the task of inferring the output image is much more difficult since the algorithm must both infer correspondences between features in the input image and the source image, and infer the unknown mapping between the images. We describe a Bayesian technique for inferring the most likely output image. The prior on the output image P(X) is a patch-based Markov random field obtained from the source image. The likelihood of the input P(Y\X) is a Bayesian network that can represent different rendering styles. We describe a computationally efficient, probabilistic inference and learning algorithm for inferring the most likely output image and learning the rendering style. We also show that current techniques for image restoration or reconstruction proposed in the vision literature (e.g., image super-resolution or de-noising) and image-based non-photorealistic rendering could be seen as special cases of our model. We demonstrate our technique using several tasks, including rendering a photograph in the artistic style of an unrelated scene, de-noising, and texture transfer
引用
收藏
页码:472 / 478
页数:7
相关论文
共 50 条
  • [21] GAIT: GRADIENT ADJUSTED UNSUPERVISED IMAGE-TO-IMAGE TRANSLATION
    Akkaya, Ibrahim Batuhan
    Halici, Ugur
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1591 - 1595
  • [22] Improving Shape Deformation in Unsupervised Image-to-Image Translation
    Gokaslan, Aaron
    Ramanujan, Vivek
    Ritchie, Daniel
    Kim, Kwang In
    Tompkin, James
    COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 : 662 - 678
  • [23] Memory-guided Unsupervised Image-to-image Translation
    Jeong, Somi
    Kim, Youngjung
    Lee, Eungbean
    Sohn, Kwanghoon
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6554 - 6563
  • [24] Unsupervised Attention-guided Image-to-Image Translation
    Mejjati, Youssef A.
    Richardt, Christian
    Tompkin, James
    Cosker, Darren
    Kim, Kwang In
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [25] SUNIT: multimodal unsupervised image-to-image translation with shared encoder
    Lin, Liyuan
    Ji, Shulin
    Zhou, Yuan
    Zhang, Shun
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (01)
  • [26] Truly Unsupervised Image-to-Image Translation with Contrastive Representation Learning
    Hong, Zhiwei
    Feng, Jianxing
    Jiang, Tao
    COMPUTER VISION - ACCV 2022, PT III, 2023, 13843 : 239 - 255
  • [27] Unsupervised Image-to-Image Translation with Self-Attention Networks
    Kang, Taewon
    Lee, Kwang Hee
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 102 - 108
  • [28] Unsupervised Exemplar-Domain Aware Image-to-Image Translation
    Fu, Yuanbin
    Ma, Jiayi
    Guo, Xiaojie
    ENTROPY, 2021, 23 (05)
  • [29] InvolutionGAN: lightweight GAN with involution for unsupervised image-to-image translation
    Deng, Haipeng
    Wu, Qiuxia
    Huang, Han
    Yang, Xiaowei
    Wang, Zhiyong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (22): : 16593 - 16605
  • [30] TransGaGa: Geometry-Aware Unsupervised Image-to-Image Translation
    Wu, Wayne
    Cao, Kaidi
    Li, Cheng
    Qian, Chen
    Loy, Chen Change
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 8004 - 8013