Quenching and annealing in the minority game

被引:9
|
作者
Burgos, E
Ceva, H
Perazzo, RPJ
机构
[1] Comis Nacl Energia Atom, Dept Fis, RA-1429 Buenos Aires, DF, Argentina
[2] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, RA-1428 Buenos Aires, DF, Argentina
[3] Univ Buenos Aires, Ctr Estudios Avanzados, RA-1114 Buenos Aires, DF, Argentina
来源
PHYSICA A | 2001年 / 294卷 / 3-4期
关键词
minority game; organization; evolution;
D O I
10.1016/S0378-4371(01)00136-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the bar attendance model (BAM) and a generalized version of the minority game (MG) in which a number of agents self organize to match an attendance that is fixed externally as a control parameter. We compare the probabilistic dynamics used in the MG with one that we introduce for the BAM that makes better use of the same available information. The relaxation dynamics of the MG leads the system to long lived, metastable (quenched) configurations in which adaptive evolution stops in spite of being far from equilibrium. On the contrary, the BAM relaxation dynamics avoids the MG glassy state, leading to an equilibrium configuration. Finally, we introduce in the MG model the concept of annealing by defining a new procedure with which one can gradually overcome the metastable MG states, bringing the system to an equilibrium that coincides with the one obtained with the BAM, (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:539 / 546
页数:8
相关论文
共 50 条
  • [21] Dynamics of a spherical minority game
    Galla, T
    Coolen, ACC
    Sherrington, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (43): : 11159 - 11172
  • [22] The dynamics of network minority game
    Wang, Bing-Hong
    SIMULATED EVOLUTION AND LEARNING, PROCEEDINGS, 2006, 4247 : 664 - 671
  • [23] The Hamming distance in the minority game
    D'hulst, R
    Rodgers, GJ
    PHYSICA A, 1999, 270 (3-4): : 514 - 525
  • [24] The Full Strategy Minority Game
    Acosta, Gabriel
    Caridi, Ines
    Guala, Sebastian
    Marenco, Javier
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (1-2) : 217 - 230
  • [25] Multiple choice minority game
    Chow, FK
    Chau, HF
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 : 601 - 615
  • [26] Deterministic dynamics in the minority game
    Jefferies, P
    Hart, ML
    Johnson, NF
    PHYSICAL REVIEW E, 2002, 65 (01): : 1 - 016105
  • [27] Minority game with peer pressure
    Chau, HF
    Chow, FK
    Ho, KH
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 332 : 483 - 495
  • [28] Q learning in the minority game
    Andrecut, M.
    Ali, M.K.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (6 II): : 1 - 067103
  • [29] Algorithmic complexity in the minority game
    Mansilla, R
    PHYSICAL REVIEW E, 2000, 62 (04): : 4553 - 4557
  • [30] Minority game with inertial agents
    Chau, H. F.
    Man, W. C.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (23-24): : 4067 - 4070