Hand-Gesture-based Human-Machine Interface System using Compressive Sensing

被引:0
|
作者
Mantecon, Tomas [1 ]
Mantecon, Ana [1 ]
del-Blanco, Carlos R. [1 ]
Jaureguizar, Fernando [1 ]
Garcia, Narciso [1 ]
机构
[1] Univ Politecn Madrid, ETSI Telecomunicac, Grp Tratamiento Imagenes, Madrid, Spain
来源
2015 IEEE INTERNATIONAL SYMPOSIUM ON CONSUMER ELECTRONICS (ISCE) | 2015年
关键词
SVM; DLQP; LBP; Compressive Sensing; gesture recognition; human-machine interface; RECOGNITION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel and robust vision-based human-machine interface system to naturally interact with computers/smart devices is proposed. The key contribution is the introduction of a Compressive Sensing technique to largely reduce the dimensionality of highly discriminative feature descriptors (computed from depth imagery), which originally have an excessive and inoperative high dimension to be applied to a Support Vector Machine based classifier. The experimental results prove the appropriateness of this approach for the proposed system.
引用
收藏
页数:2
相关论文
共 50 条
  • [21] Live Demonstration: Event-Driven Hand Gesture Recognition for Wearable Human-Machine Interface
    Becchio, Martina
    Voster, Niccolo
    Prestia, Andrea
    Mongardi, Andrea
    Rossi, Fabio
    Ros, Paolo Motto
    Roch, Massimo Ruo
    Martina, Maurizio
    Demarchi, Danilo
    2021 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE (IEEE BIOCAS 2021), 2021,
  • [22] A Wearable Human-Machine-Interface (HMI) System Based on Colocated EMG-pFMG Sensing for Hand Gesture Recognition
    Zhang, Shen
    Zhou, Hao
    Tchantchane, Rayane
    Alici, Gursel
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2025, 30 (01) : 369 - 380
  • [23] Live Demonstration: Capacitive-Based Gesture Recognition System for Human-Machine Interface in Automotive Applications
    Ferro, E.
    Gonzalez, J. A.
    Segovia, M.
    2020 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2020,
  • [24] Deep Learning-Based Hand Gesture Recognition System and Design of a Human–Machine Interface
    Abir Sen
    Tapas Kumar Mishra
    Ratnakar Dash
    Neural Processing Letters, 2023, 55 : 12569 - 12596
  • [25] EMG-based human-machine interface system
    Alsayegh, OA
    2000 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, PROCEEDINGS VOLS I-III, 2000, : 925 - 928
  • [26] Visual gesture recognition for human-machine interface of robot teleoperation
    Hu, C
    Meng, MQ
    Liu, PXP
    Wang, X
    IROS 2003: PROCEEDINGS OF THE 2003 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, VOLS 1-4, 2003, : 1560 - 1565
  • [27] Advancements in Tactile Hand Gesture Recognition for Enhanced Human-Machine Interaction
    Fumelli, Chiara
    Dutta, Anirvan
    Kaboli, Mohsen
    2024 IEEE INTERNATIONAL SYMPOSIUM ON ROBOTIC AND SENSORS ENVIRONMENTS, ROSE 2024, 2024,
  • [28] A Gesture Database of B-mode Ultrasound-based Human-machine Interface
    Xia, Wei
    Ye, Lin-Wei
    Liu, Hong-Hai
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOL 1, 2017, : 118 - 122
  • [29] Robust Implementation of Hand Gesture Recognition for Remote Human-Machine Interaction
    Dulayatrakul, Jakkrit
    Prasertsakul, Pawin
    Kondo, Toshiaki
    Nilkhamhang, Itthisek
    2015 7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2015, : 247 - 252
  • [30] A Human-Machine Interface Using Electrical Impedance Tomography for Hand Prosthesis Control
    Wu, Yu
    Jiang, Dai
    Liu, Xiao
    Bayford, Richard
    Demosthenous, Andreas
    IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, 2018, 12 (06) : 1322 - 1333