On the Grundy Number of a Graph

被引:0
|
作者
Havet, Frederic [1 ]
Sampaio, Leonardo [1 ]
机构
[1] UNSA, CNRS, I3S, Projet Mascotte, F-06902 Sophia Antipolis, France
来源
关键词
Colouring; Online Colouring; Greedy Colouring; NP-completeness; Fixed Parameter Complexity;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Grundy number of a graph G, denoted by Gamma(G), is the largest k such that G has a greedy k-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertices of G. Trivially Gamma(G) <= Delta(G) + 1. In this paper, we show that deciding if Gamma(G) <= Delta(G) is NP-complete. We then show that deciding if Gamma(G) >= vertical bar V(G)vertical bar - k is fixed parameter tractable with respect to the parameter k.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [41] THE GRAPH RECONSTRUCTION NUMBER
    HARARY, F
    PLANTHOLT, M
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 451 - 454
  • [42] THE DISCIPLINE NUMBER OF A GRAPH
    CHVATAL, V
    COOK, W
    DISCRETE MATHEMATICS, 1990, 86 (1-3) : 191 - 198
  • [43] THE GEODETIC NUMBER OF A GRAPH
    HARARY, F
    LOUKAKIS, E
    TSOUROS, C
    MATHEMATICAL AND COMPUTER MODELLING, 1993, 17 (11) : 89 - 95
  • [44] THE NOMATIC NUMBER OF A GRAPH
    JAYARAM, SR
    NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 1987, 10 (01): : 23 - 25
  • [45] The damage number of a graph
    Cox, Danielle
    Sanaei, Asiyeh
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 75 : 1 - 16
  • [46] The hub number of a graph
    Grauman, Tracy
    Hartke, Stephen G.
    Jobson, Adam
    Kinnersley, Bill
    West, Douglas B.
    Wiglesworth, Lesley
    Worah, Pratik
    Wu, Hehui
    INFORMATION PROCESSING LETTERS, 2008, 108 (04) : 226 - 228
  • [47] ON THE COP NUMBER OF A GRAPH
    BERARDUCCI, A
    INTRIGILA, B
    ADVANCES IN APPLIED MATHEMATICS, 1993, 14 (04) : 389 - 403
  • [48] THE NEIGHBORHOOD NUMBER OF A GRAPH
    SAMPATHKUMAR, E
    NEERALAGI, PS
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1985, 16 (02): : 126 - 132
  • [49] The detour number of a graph
    Chartrand, G
    Johns, GL
    Zhang, P
    UTILITAS MATHEMATICA, 2003, 64 : 97 - 113
  • [50] THE EAVESDROPPING NUMBER OF A GRAPH
    Stuart, Jeffrey L.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2009, 59 (03) : 623 - 636