Propensity score modeling strategies for the causal analysis of observational data

被引:91
|
作者
Hullsiek, KH
Louis, TA
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55414 USA
[2] RAND Corp, Arlington, VA 22202 USA
关键词
bias reduction; confounding; observational data; propensity score methods;
D O I
10.1093/biostatistics/3.2.179
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Propensity score methods are used to estimate a treatment effect with observational data. This paper considers the formation of propensity score subclasses by investigating different methods for determining subclass boundaries and the number of subclasses used. We compare several methods: balancing a summary of the observed information matrix and equal-frequency subclasses. Subclasses that balance the inverse variance of the treatment effect reduce the mean squared error of the estimates and maximize the number of usable subclasses.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 50 条
  • [21] Total arterial revascularization strategies: A meta-analysis of propensity score-matched observational studies
    Urso, Stefano
    Sadaba, Rafael
    Maria Gonzalez, Jesus
    Nogales, Eliu
    Pettinari, Matteo
    Angeles Tena, Maria
    Paredes, Federico
    Portela, Francisco
    JOURNAL OF CARDIAC SURGERY, 2019, 34 (09) : 837 - 845
  • [22] Causal Learning From Predictive Modeling for Observational Data
    Ramanan, Nandini
    Natarajan, Sriraam
    FRONTIERS IN BIG DATA, 2020, 3
  • [23] EVALUATION OF DIFFERENT MISSING DATA STRATEGIES IN PROPENSITY SCORE ANALYSES
    Driessen, Johanna
    Williamson, Elizabeth
    Carpenter, James
    de Vries, Frank
    OSTEOPOROSIS INTERNATIONAL, 2016, 27 : 652 - 652
  • [24] Propensity score matching for treatment delay effects with observational survival data
    Hade, Erinn M.
    Nattino, Giovanni
    Frey, Heather A.
    Lu, Bo
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2020, 29 (03) : 695 - 708
  • [25] Propensity Score Matching A Powerful Tool for Analyzing Observational Nonrandomized Data
    Badhiwala, Jetan H.
    Karmur, Brij S.
    Wilson, Jefferson R.
    CLINICAL SPINE SURGERY, 2021, 34 (01): : 22 - 24
  • [26] Evaluation Of Different Missing Data Strategies In Propensity Score Analyses
    Driessen, Johanna H. M.
    Williamson, Elizabeth J.
    Carpenter, James R.
    de Vries, Frank
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2016, 25 : 154 - 155
  • [27] Propensity Score Analysis with Survey Weighted Data
    Ridgeway, Greg
    Kovalchik, Stephanie Ann
    Griffin, Beth Ann
    Kabeto, Mohammed U.
    JOURNAL OF CAUSAL INFERENCE, 2015, 3 (02) : 237 - 249
  • [28] Using Propensity Score Analysis for Making Causal Claims in Research Articles
    Bai, Haiyan
    EDUCATIONAL PSYCHOLOGY REVIEW, 2011, 23 (02) : 273 - 278
  • [29] Causal Inference with Multilevel Data: A Comparison of Different Propensity Score Weighting Approaches
    Fuentes, Alvaro
    Luedtke, Oliver
    Robitzsch, Alexander
    MULTIVARIATE BEHAVIORAL RESEARCH, 2022, 57 (06) : 916 - 939
  • [30] Propensity Score Analysis of Complex Survey Data with Structural Equation Modeling: A Tutorial with Mplus
    Leite, Walter L.
    Stapleton, Laura M.
    Bettini, Elizabeth F.
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2019, 26 (03) : 448 - 469