Propensity score modeling strategies for the causal analysis of observational data

被引:91
|
作者
Hullsiek, KH
Louis, TA
机构
[1] Univ Minnesota, Sch Publ Hlth, Div Biostat, Minneapolis, MN 55414 USA
[2] RAND Corp, Arlington, VA 22202 USA
关键词
bias reduction; confounding; observational data; propensity score methods;
D O I
10.1093/biostatistics/3.2.179
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Propensity score methods are used to estimate a treatment effect with observational data. This paper considers the formation of propensity score subclasses by investigating different methods for determining subclass boundaries and the number of subclasses used. We compare several methods: balancing a summary of the observed information matrix and equal-frequency subclasses. Subclasses that balance the inverse variance of the treatment effect reduce the mean squared error of the estimates and maximize the number of usable subclasses.
引用
收藏
页码:179 / 193
页数:15
相关论文
共 50 条
  • [1] Causal inference with observational data: A tutorial on propensity score analysis
    Narita, Kaori
    Tena, J. D.
    Detotto, Claudio
    LEADERSHIP QUARTERLY, 2023, 34 (03):
  • [2] Bayesian propensity score analysis for observational data
    McCandless, Lawrence C.
    Gustafson, Paul
    Austin, Peter C.
    STATISTICS IN MEDICINE, 2009, 28 (01) : 94 - 112
  • [3] Bayesian propensity score analysis for observational data
    McCandless, Lawrence C.
    Gustafson, Paul
    Austin, Peter C.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2006, 15 : S40 - S40
  • [4] Bayesian propensity score analysis for clustered observational data
    Zhou, Qi
    McNeal, Catherine
    Copeland, Laurel A.
    Zachariah, Justin P.
    Song, Joon Jin
    STATISTICAL METHODS AND APPLICATIONS, 2020, 29 (02): : 335 - 355
  • [5] Bayesian propensity score analysis for clustered observational data
    Qi Zhou
    Catherine McNeal
    Laurel A. Copeland
    Justin P. Zachariah
    Joon Jin Song
    Statistical Methods & Applications, 2020, 29 : 335 - 355
  • [6] Bayesian propensity score analysis for observational data.
    McCandless, L. C.
    Gustafson, P.
    Austin, P. C.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2006, 163 (11) : S222 - S222
  • [7] Flexible propensity score estimation strategies for clustered data in observational studies
    Chang, Ting-Hsuan
    Trang Quynh Nguyen
    Lee, Youjin
    Jackson, John W.
    Stuart, Elizabeth A.
    STATISTICS IN MEDICINE, 2022, 41 (25) : 5016 - 5032
  • [8] Testing causal effects in observational survival data using propensity score matching design
    Lu, Bo
    Cai, Dingjiao
    Tong, Xingwei
    STATISTICS IN MEDICINE, 2018, 37 (11) : 1846 - 1858
  • [9] Propensity score for the analysis of observational data: An introduction and an illustrative example
    Cavuto, S.
    Bravi, F.
    Grassi, M. C.
    Apolone, G.
    DRUG DEVELOPMENT RESEARCH, 2006, 67 (03) : 208 - 216
  • [10] THE CENTRAL ROLE OF THE PROPENSITY SCORE IN OBSERVATIONAL STUDIES FOR CAUSAL EFFECTS
    ROSENBAUM, PR
    RUBIN, DB
    BIOMETRIKA, 1983, 70 (01) : 41 - 55