Silver-Based Nanodisk Codes

被引:47
|
作者
Banholzer, Matthew J. [1 ,3 ]
Osberg, Kyle D. [2 ,3 ]
Li, Shuzhou [1 ,3 ]
Mangelson, Bryan F. [1 ,3 ]
Schatz, George C. [1 ,3 ]
Mirkin, Chad A. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
基金
美国国家科学基金会;
关键词
encoding; tagging; surface-enhanced Raman scattering; SERS; on-wire lithography; biodetection; ON-WIRE LITHOGRAPHY; DNA; NANOSTRUCTURES; NANOPARTICLES; NANOBARCODES; PARTICLES; NANOWIRES; BARCODES; ARRAY; GOLD;
D O I
10.1021/nn101231u
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report a novel method for synthesizing silver-based nanodisk code (NDC) structures using on-wire lithography, where we employ milder synthetic and etching conditions than those used to synthesize the analogous gold structures. The silver structures exhibit stronger surface-enhanced Raman scattering signals than their Au counterparts at 633 and 532 nm excitation and, therefore, lead to lower limits of detection when used in the context of DNA-based detection assays. Finally, use of two enhancing nanostructured materials in one disk code dramatically increases the information storage density for encoding. For example, a disk code consisting of 5 gold disk pairs has 13 unique combinations of enhancing patterns, while one with 5 disk pairs that can be either gold or silver has 98.
引用
收藏
页码:5446 / 5452
页数:7
相关论文
共 50 条
  • [31] Silver-Based Plasmonic Catalysts for Carbon Dioxide Reduction
    Garcia-Garcia, Iker
    Lovell, Emma C.
    Wong, Roong Jien
    Barrio, V. Laura
    Scott, Jason
    Cambra, Jose F.
    Amal, Rose
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (04) : 1879 - 1887
  • [32] ISOTOPE EFFECT FOR DIFFUSION IN SILVER-BASED SUPERIONIC CONDUCTORS
    ARZIGIAN, JS
    LAZARUS, D
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (03): : 413 - 413
  • [33] Silver-based storage catalyst for neutralization of nitrogen oxides
    Mihaylova, A.
    Naydenov, A.
    Kovacheva, D.
    Ivanova, E.
    Stoyanova, D.
    Stefanov, P.
    CATALYSIS COMMUNICATIONS, 2009, 10 (09) : 1288 - 1291
  • [34] Advanced silver-based metallization patterning for ULSI applications
    Alford, TL
    Nguyen, P
    Zeng, YX
    Mayer, JW
    MICROELECTRONIC ENGINEERING, 2001, 55 (1-4) : 383 - 388
  • [35] A silver-based substitute for mercury containing dental amalgams
    不详
    JOURNAL OF RESEARCH OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, 1996, 101 (03): : 412 - 412
  • [36] Silver-based diamond composites with highest thermal conductivity
    Tavangar, Reza
    Weber, Ludger
    EMERGING MATERIALS RESEARCH, 2012, 1 (02) : 67 - 74
  • [37] Hydrodehalogenation of Polychloromethanes on Silver-Based Gas Diffusion Electrodes
    Rondinini, Sandra
    Pargoletti, Eleonora
    Vertova, Alberto
    Minguzzi, Alessandro
    CHEMELECTROCHEM, 2021, 8 (10): : 1892 - 1898
  • [38] Silver-based contact materials - microstructure and mechanical properties
    Wielage, B.
    Steger, H.
    Podlesak, H.
    Lampke, Th.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2008, 39 (12) : 940 - 943
  • [39] Transparency controllable silver-based electrode for flexible optoelectronics
    Kim, Kisoo
    Hong, Kihyon
    Koo, Bonhyeong
    Lee, Illhwan
    Lee, Jong-Lam
    APPLIED PHYSICS LETTERS, 2013, 102 (08)
  • [40] Analysis of a questioned document printed by a silver-based process
    Cantu, Antonio A.
    FORENSIC CHEMISTRY, 2018, 10 : 1 - 4