Introduction to the special section on deep reinforcement learning for future wireless communication networks

被引:4
|
作者
Gong, Shimin [1 ]
Hoang, Dinh Thai [2 ]
Niyato, Dusit [3 ,4 ]
El Shafie, Ahmed [5 ]
De Domenico, Antonio [6 ]
Strinati, Emilio Calvanese [7 ]
Hoydis, Jakob [8 ]
机构
[1] Sun Yat Sen Univ, Sch Intelligent Syst Engn, Guangzhou 510275, Guangdong, Peoples R China
[2] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW 2007, Australia
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[4] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 639798, Singapore
[5] Qualcomm Technol, San Diego, CA 92121 USA
[6] CEA LETICMINATEC, F-38054 Grenoble, France
[7] CEA LETICMINATEC, Smart Devices & Telecommun European Collaborat St, F-38054 Grenoble, France
[8] Nokia Bell Labs, Res Dept, F-91620 Paris, France
关键词
Special issues and sections; Deep learning; Reinforcement learning; Wireless networks; Communication networks;
D O I
10.1109/TCCN.2019.2954144
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
We are delighted to introduce the readers to this special section of the IEEE Transactions on Cognitive Communications and Networking (TCCN), which aims at exploring recent advances and addressing practical challenges in the applications of deep reinforcement learning (DRL) in modern wireless networks. We have received a total of 29 submissions, and after a rigorous review process, 12 articles have been selected for publication, which are briefly discussed as follows.
引用
收藏
页码:1019 / 1023
页数:5
相关论文
共 50 条
  • [31] Deep Reinforcement Learning for Dynamic Spectrum Access in Wireless Networks
    Xu, Y.
    Yu, J.
    Headley, W. C.
    Buehrer, R. M.
    2018 IEEE MILITARY COMMUNICATIONS CONFERENCE (MILCOM 2018), 2018, : 207 - 212
  • [32] Deep Reinforcement Learning for Energy Efficiency Optimization in Wireless Networks
    Fan, Haoren
    Zhu, Lei
    Yao, Changhua
    Guo, Jibin
    Lu, Xiaowen
    2019 IEEE 4TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYSIS (ICCCBDA), 2019, : 465 - 471
  • [33] Deep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks
    Wang, Shangxing
    Liu, Hanpeng
    Gomes, Pedro Henrique
    Krishnamachari, Bhaskar
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2018, 4 (02) : 257 - 265
  • [34] Guest Editorial Introduction to the Special Section on Artificial Intelligence/Machine Learning Enabled Reconfigurable Wireless Networks
    Rawat, Danda B.
    Assaad, Mohamad
    Ghosh, Uttam
    Datta, Raja
    Murugesan, San
    Koutsoukos, Xenofon
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (01): : 4 - 6
  • [35] Introduction: Special Issue on Robust and Resilient Future Communication Networks
    Tornatore, Massimo
    Gomes, Teresa
    Mas-Machuca, Carmen
    Oki, Eiji
    Assi, Chadi
    Schupke, Dominic
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 4929 - 4935
  • [36] Multiplexing eMBB and URLLC in Wireless Powered Communication Networks: A Deep Reinforcement Learning-Based Approach
    Jiang, Xiaotian
    Liang, Kai
    Chu, Xiaoli
    Li, Cheng
    Karagiannidis, George K.
    IEEE WIRELESS COMMUNICATIONS LETTERS, 2023, 12 (10) : 1716 - 1720
  • [37] Guest Editors Introduction: Special Section on Robust and Reliable Networks of the Future
    Tornatore, Massimo
    Gomes, Teresa
    Mas-Machuca, Carmen
    Oki, Eiji
    Assi, Chadi
    Schupke, Dominic
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (03): : 2151 - 2156
  • [38] Deep Reinforcement Learning Empowered Adaptivity for Future Blockchain Networks
    Qiu C.
    Ren X.
    Cao Y.
    Mai T.
    IEEE Open Journal of the Computer Society, 2021, 2 : 99 - 105
  • [39] Deep reinforcement learning in edge networks: Challenges and future directions
    Hazra, Abhishek
    Tummala, Veera Manikantha Rayudu
    Mazumdar, Nabajyoti
    Sah, Dipak Kumar
    Adhikari, Mainak
    PHYSICAL COMMUNICATION, 2024, 66
  • [40] Introduction to special section on change communication
    Elving, Wim
    van Vuuren, Mark
    CORPORATE COMMUNICATIONS, 2008, 13 (03) : 275 - 279