Magnetic-field generation by the ablative nonlinear Rayleigh-Taylor instability

被引:4
|
作者
Nilson, Philip M. [1 ,2 ]
Gao, L. [1 ,3 ]
Igumenshchev, I. V. [1 ]
Fiksel, G. [1 ]
Yan, R. [1 ,2 ,3 ]
Davies, J. R. [1 ,2 ,3 ]
Martinez, D. [4 ]
Smalyuk, V. A. [4 ]
Haines, M. G. [5 ]
Blackman, E. G. [1 ,6 ]
Froula, D. H. [1 ]
Betti, R. [1 ,2 ,3 ,6 ]
Meyerhofer, D. D. [1 ,2 ,3 ,6 ]
机构
[1] Univ Rochester, Laser Energet Lab, Rochester, NY 14623 USA
[2] Univ Rochester, Fus Sci Ctr, Rochester, NY 14623 USA
[3] Univ Rochester, Dept Mech Engn, Rochester, NY 14623 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[5] Univ London Imperial Coll Sci Technol & Med, Dept Phys, London SW7 2AZ, England
[6] Univ Rochester, Dept Phys, Rochester, NY 14623 USA
关键词
INERTIAL CONFINEMENT FUSION; SCALING LAWS; OMEGA LASER;
D O I
10.1017/S0022377814001093
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experiments reporting magnetic-field generation by the ablative nonlinear Rayleigh-Taylor (RT) instability are reviewed. The experiments show how large-scale magnetic fields can, under certain circumstances, emerge and persist in strongly driven laboratory and astrophysical flows at drive pressures exceeding one million times atmospheric pressure.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Nonlinear saturation of the Rayleigh-Taylor instability
    Das, A
    Mahajan, S
    Kaw, P
    Sen, A
    Benkadda, S
    Verga, A
    PHYSICS OF PLASMAS, 1997, 4 (04) : 1018 - 1027
  • [42] NONLINEAR RAYLEIGH-TAYLOR INSTABILITY - COMMENT
    SHIVAMOGGI, BK
    ASTROPHYSICS AND SPACE SCIENCE, 1983, 97 (01) : 221 - 221
  • [43] RAYLEIGH-TAYLOR INSTABILITY OF COMPRESSIBLE FINITELY CONDUCTING ROTATING FLUID IN THE PRESENCE OF A MAGNETIC-FIELD
    SHARMA, BM
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES SECTION A, 1979, 88 (01): : 55 - 68
  • [44] Effects of ablation velocity on ablative Rayleigh-Taylor instability
    Xin, J.
    Liu, Y.
    Jiang, X.
    Yan, R.
    Li, J.
    Wan, Z. -H.
    Sun, D. -J.
    Zheng, J.
    PHYSICS OF PLASMAS, 2023, 30 (11)
  • [45] NUMERICAL-SIMULATION OF ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    GARDNER, JH
    BODNER, SE
    DAHLBURG, JP
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (04): : 1070 - 1074
  • [46] NOTE ON NONLINEAR RAYLEIGH-TAYLOR INSTABILITY
    MALIK, SK
    SINGH, M
    ASTROPHYSICS AND SPACE SCIENCE, 1984, 106 (01) : 205 - 206
  • [47] Rayleigh-Taylor Instability in Nonlinear Optics
    Jia, Shu
    Fleischer, Jason W.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 1429 - 1430
  • [48] Ablative stabilization of the deceleration phase Rayleigh-Taylor instability
    Lobatchev, V
    Betti, R
    PHYSICAL REVIEW LETTERS, 2000, 85 (21) : 4522 - 4525
  • [49] Coupled model analysis of the ablative Rayleigh-Taylor instability
    Kuang, Yuanyuan
    Lu, Yan
    Lin, Zhi
    Yang, Ming
    PLASMA SCIENCE & TECHNOLOGY, 2023, 25 (05)
  • [50] Effect of initial phase on the ablative Rayleigh-Taylor instability
    Kuang, Yuanyuan
    Lu, Yan
    Lin, Zhi
    Yang, Ming
    PHYSICS OF PLASMAS, 2023, 30 (10)