Joint bayesian convolutional sparse coding for image super-resolution

被引:1
|
作者
Ge, Qi [1 ,2 ]
Shao, Wenze [1 ]
Wang, Liqian [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl Engn Res Ctr Commun & Networking, Nanjing, Jiangsu, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 09期
基金
中国博士后科学基金;
关键词
SPATIAL-RESOLUTION; DICTIONARY; NETWORK; FUSION;
D O I
10.1371/journal.pone.0201463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a convolutional sparse coding (CSC) for super resolution (CSC-SR) algorithm with a joint Bayesian learning strategy. Due to the unknown parameters in solving CSC-SR, the performance of the algorithm depends on the choice of the parameter. To this end, a coupled Beta-Bernoulli process is employed to infer appropriate filters and sparse coding maps (SCM) for both low resolution (LR) image and high resolution (HR) image. The filters and the SCMs are learned in a joint inference. The experimental results validate the advantages of the proposed approach over the previous CSC-SR and other state-of-the-art SR methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] JOINT IMAGE SUPER-RESOLUTION VIA RECURRENT CONVOLUTIONAL NEURAL NETWORKS WITH COUPLED SPARSE PRIORS
    Marivani, Iman
    Tsiligianni, Evaggelia
    Cornelis, Bruno
    Deligiannis, Nikos
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 868 - 872
  • [22] Remote sensing image super-resolution using multi-scale convolutional sparse coding network
    Cheng, Ruihong
    Wang, Huajun
    Luo, Ping
    PLOS ONE, 2022, 17 (10):
  • [23] Convolutional sparse auto-encoder for image super-resolution reconstruction
    Zhang X.
    Zhou W.
    Duan Z.
    Wei H.
    Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2019, 48 (01):
  • [24] Semi-Coupled Convolutional Sparse Learning for Image Super-Resolution
    Li, Lingling
    Zhang, Sibo
    Jiao, Licheng
    Liu, Fang
    Yang, Shuyuan
    Tang, Xu
    REMOTE SENSING, 2019, 11 (21)
  • [25] Manifold Inconsistency Constrained Sparse Coding for Image Super-Resolution Reconstruction
    Zhu, Huasheng
    Xie, Kaiyan
    Ye, Jun
    Wu, Zhaoming
    2017 10TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI), 2017,
  • [26] Joint MR image super-resolution reconstruction and sparse coefficients estimation
    Zhang, Di
    He, Jiazhong
    Du, Minghui
    INTERNATIONAL JOURNAL OF BIOMEDICAL ENGINEERING AND TECHNOLOGY, 2015, 19 (04) : 373 - 392
  • [27] Super-resolution based on sparse dictionary coding
    Li, Min
    Cheng, Jian
    Le, Xiang
    Luo, Huan-Min
    Ruan Jian Xue Bao/Journal of Software, 2012, 23 (05): : 1315 - 1324
  • [28] Joint Coupled Convolutional Dictionary Learning for Multimodal Image Super-Resolution
    Kumar, Kriti
    Majumdar, Angshul
    Sahu, Saurabh
    Kumar, A. Anil
    Chandra, M. Girish
    IEEE SENSORS LETTERS, 2025, 9 (02)
  • [29] Bayesian Methods for Image Super-Resolution
    Pickup, Lyndsey C.
    Capel, David P.
    Roberts, Stephen J.
    Zisserman, Andrew
    COMPUTER JOURNAL, 2009, 52 (01): : 101 - 113
  • [30] Single MR-image super-resolution based on convolutional sparse representation
    Kasiri, Shima
    Ezoji, Mehdi
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (08) : 1525 - 1533