Joint bayesian convolutional sparse coding for image super-resolution

被引:1
|
作者
Ge, Qi [1 ,2 ]
Shao, Wenze [1 ]
Wang, Liqian [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Natl Engn Res Ctr Commun & Networking, Nanjing, Jiangsu, Peoples R China
来源
PLOS ONE | 2018年 / 13卷 / 09期
基金
中国博士后科学基金;
关键词
SPATIAL-RESOLUTION; DICTIONARY; NETWORK; FUSION;
D O I
10.1371/journal.pone.0201463
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We propose a convolutional sparse coding (CSC) for super resolution (CSC-SR) algorithm with a joint Bayesian learning strategy. Due to the unknown parameters in solving CSC-SR, the performance of the algorithm depends on the choice of the parameter. To this end, a coupled Beta-Bernoulli process is employed to infer appropriate filters and sparse coding maps (SCM) for both low resolution (LR) image and high resolution (HR) image. The filters and the SCMs are learned in a joint inference. The experimental results validate the advantages of the proposed approach over the previous CSC-SR and other state-of-the-art SR methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] JOINT SPARSE CONVOLUTIONAL CODING FOR IMAGE SUPER-RESOLUTION RESTORATION
    Tao, Sun
    Wei, Chen Hua
    2020 17TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2020, : 349 - 355
  • [2] Convolutional Sparse Coding for Image Super-resolution
    Gu, Shuhang
    Zuo, Wangmeng
    Xie, Qi
    Meng, Deyu
    Feng, Xiangchu
    Zhang, Lei
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 1823 - 1831
  • [3] Image Super-Resolution with Fast Approximate Convolutional Sparse Coding
    Osendorfer, Christian
    Soyer, Hubert
    van der Smagt, Patrick
    NEURAL INFORMATION PROCESSING, ICONIP 2014, PT III, 2014, 8836 : 250 - 257
  • [4] Convolutional Analysis Sparse Coding for Multimodal Image Super-Resolution
    Kumar, Kriti
    Majumdar, Angshul
    Kumar, A. Anil
    Chandra, M. Girish
    IEEE SENSORS LETTERS, 2024, 8 (06) : 1 - 4
  • [5] Image super-resolution by learning weighted convolutional sparse coding
    Jingwei He
    Lei Yu
    Zhou Liu
    Wen Yang
    Signal, Image and Video Processing, 2021, 15 : 967 - 975
  • [6] Image super-resolution by learning weighted convolutional sparse coding
    He, Jingwei
    Yu, Lei
    Liu, Zhou
    Yang, Wen
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (05) : 967 - 975
  • [7] Depth image super-resolution based on joint sparse coding
    Li, Beichen
    Zhou, Yuan
    Zhang, Yeda
    Wang, Aihua
    PATTERN RECOGNITION LETTERS, 2020, 130 : 21 - 29
  • [8] LEARNED MULTIMODAL CONVOLUTIONAL SPARSE CODING FOR GUIDED IMAGE SUPER-RESOLUTION
    Marivani, Iman
    Tsiligianni, Evaggelia
    Cornelis, Bruno
    Deligiannis, Nikos
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2891 - 2895
  • [9] Convolutional Sparse Coding Using Wavelets for Single Image Super-Resolution
    Ahmed, Awais
    Kun, She
    Memon, Raheel Ahmed
    Ahmed, Junaid
    Tefera, Getnet
    IEEE ACCESS, 2019, 7 : 121350 - 121359
  • [10] Single Image Super-resolution Based on Residual Learning and Convolutional Sparse Coding
    Xie, Chao
    Jiang, Shengqin
    Lu, Xiaobo
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806