Out-of-plane carrier spin in transition-metal dichalcogenides under electric current

被引:11
|
作者
Li, Xiao [1 ,2 ]
Chen, Hua [3 ,4 ]
Niu, Qian [2 ]
机构
[1] Nanjing Normal Univ, Sch Phys & Technol, Ctr Quantum Transport & Thermal Energy Sci, Nanjing 210023, Peoples R China
[2] Univ Texas Austin, Dept Phys, Austin, TX 78712 USA
[3] Colorado State Univ, Dept Phys, Ft Collins, CO 80523 USA
[4] Colorado State Univ, Sch Adv Mat Discovery, Ft Collins, CO 80523 USA
基金
中国国家自然科学基金;
关键词
valley degree of freedom; polarization | intrinsic spin-orbit coupling; transition-metal dichalcogenides; out-of-plane current-induced spin polarization; MONOLAYER; ORIENTATION;
D O I
10.1073/pnas.1912472117
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Absence of spatial inversion symmetry allows a nonequilibrium spin polarization to be induced by electric currents, which, in two-dimensional systems, is conventionally analyzed using the Rashba model, leading to in-plane spin polarization. Given that the material realizations of out-of-plane current-induced spin polarization (CISP) are relatively fewer than that of in-plane CISP, but important for perpendicular-magnetization switching and electronic structure evolution, it is highly desirable to search for new prototypical materials and mechanisms to generate the out-of-plane carrier spin and promote the study of CISP. Here, we propose that an out-of-plane CISP can emerge in ferromagnetic transition-metal dichalcogenide monolayers. Taking monolayer VSe2 and VTe2 as examples, we calculate the out-of-plane CISP based on linear-response theory and first-principles methods. We deduce a general low-energy model for easy-plane ferromagnetic transition-metal dichalcogenide monolayers and find that the outof-plane CISP is due to an in-plane magnetization together with intrinsic spin-orbit coupling inducing an anisotropic out-of-plane spin splitting in the momentum space. The CISP paves the way for magnetization rotation and electric control of the valley quantum number.
引用
收藏
页码:16749 / 16755
页数:7
相关论文
共 50 条
  • [41] Dispersion of Transition-Metal Dichalcogenides and Their Intercalation Compounds
    Kulikov, L. M.
    Semenov-Kobzar, A. A.
    Grinkevich, K. E.
    Kossko, I. A.
    Inorganic Materials, 33 (10):
  • [42] Ultrafast switching of a nanomagnet by a combined out-of-plane and in-plane polarized spin current pulse
    Lee, O. J.
    Pribiag, V. S.
    Braganca, P. M.
    Gowtham, P. G.
    Ralph, D. C.
    Buhrman, R. A.
    APPLIED PHYSICS LETTERS, 2009, 95 (01)
  • [43] Microscopic Coulomb interaction in transition-metal dichalcogenides
    Neuhaus, J.
    Liebscher, S. C.
    Meckbach, L.
    Stroucken, T.
    Koch, S. W.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2021, 33 (03)
  • [44] Intercalated transition-metal dichalcogenides at different temperatures
    Ali, S. K. Imran
    van Smaalen, Sander
    Zoerb, Steffen
    Harbrecht, Bernd
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C647 - C648
  • [45] RESONANCE BONDING IN LAYERED TRANSITION-METAL DICHALCOGENIDES
    LUCOVSKY, G
    WHITE, RM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1973, 18 (03): : 452 - 452
  • [46] Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides
    Chia, Xinyi
    Eng, Alex Yong Sheng
    Ambrosi, Adriano
    Tan, Shu Min
    Pumera, Martin
    CHEMICAL REVIEWS, 2015, 115 (21) : 11941 - 11966
  • [47] Excitonic collapse in semiconducting transition-metal dichalcogenides
    Rodin, A. S.
    Neto, A. H. Castro
    PHYSICAL REVIEW B, 2013, 88 (19)
  • [48] Valley photothermoelectric effects in transition-metal dichalcogenides
    Konabe, Satoru
    Yamamoto, Takahiro
    PHYSICAL REVIEW B, 2014, 90 (07)
  • [49] Discontinuity in the In-plane to Out-of-plane Transition of Kirigami
    Isobe, Midori
    Okumura, Ko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2019, 88 (02)
  • [50] Atomic Layer Deposition of Transition-Metal Dichalcogenides
    Li, Zhipu
    Zhao, Xun
    Wu, Shiru
    Lu, Min
    Xie, Xiaoji
    Yan, Jiaxu
    CRYSTAL GROWTH & DESIGN, 2024, 24 (05) : 1865 - 1879