The finite volume spectral element method to solve Turing models in the biological pattern formation

被引:38
|
作者
Shakeri, Fatemeh [1 ]
Dehghan, Mehdi [1 ]
机构
[1] Amirkabir Univ Technol, Fac Math & Comp Sci, Dept Appl Math, Tehran 15914, Iran
关键词
Turing systems; Schnakenberg model; Finite volume method; Spectral element method; Mathematical biology; REACTION-DIFFUSION-SYSTEMS; NUMERICAL-METHOD; POROUS-MEDIA; FLUID-FLOW; EQUATION; GROWTH; STATES; APPROXIMATIONS; CONVERGENCE; TRANSITIONS;
D O I
10.1016/j.camwa.2011.09.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is well known that reaction-diffusion systems describing Turing models can display very rich pattern formation behavior. Turing systems have been proposed for pattern formation in various biological systems, e.g. patterns in fish, butterflies, lady bugs and etc. A Turing model expresses temporal behavior of the concentrations of two reacting and diffusing chemicals which is represented by coupled reaction-diffusion equations. Since the base of these reaction-diffusion equations arises from the conservation laws, we develop a hybrid finite volume spectral element method for the numerical solution of them and apply the proposed method to Turing system generated by the Schnakenberg model. Also, as numerical simulations, we study the variety of spatio-temporal patterns for various values of diffusion rates in the problem. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4322 / 4336
页数:15
相关论文
共 50 条
  • [31] A new high-order finite volume element method with spectral-like resolution
    Sarghini, F
    Coppola, G
    de Felice, G
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (3-4) : 487 - 496
  • [32] Control volume finite element method for radiation
    Ben Salah, M
    Askri, F
    Rousse, D
    Ben Nasrallah, S
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 92 (01): : 9 - 30
  • [33] Finite element integration for the control volume method
    Neises, J
    Steinbach, I
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1996, 12 (09): : 543 - 555
  • [34] On a numerical Liapunov-Schmidt spectral method and its application to biological pattern formation
    Böhmer, K
    Geiger, C
    Rodriguez, JD
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (02) : 683 - 701
  • [35] Volume conserving finite element Simulations of deformable models
    Irving, Geoffrey
    Schroeder, Craig
    Fedkiw, Ronald
    ACM TRANSACTIONS ON GRAPHICS, 2007, 26 (03):
  • [36] Numerical solution of biological reaction diffusion models on fixed domains by the finite element method
    Andres Gonzalez, Libardo
    Carlos Vanegas, Juan
    Alexander Garzon, Diego
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2009, (48): : 65 - 75
  • [37] A finite element method for growth in biological development
    Murea, Cornel M.
    Hentschel, H. G. E.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2007, 4 (02) : 339 - 353
  • [38] Fourier analysis of Turing-like pattern formation in cellular automaton models
    Dormann, S
    Deutsch, A
    Lawniczak, AT
    FUTURE GENERATION COMPUTER SYSTEMS, 2001, 17 (07) : 901 - 909
  • [39] Using spectral element method to solve variational inequalities with applications in finance
    Moradipour, M.
    Yousefi, S. A.
    CHAOS SOLITONS & FRACTALS, 2015, 81 : 208 - 217
  • [40] Application of a hybrid finite difference/finite volume method to solve an automotive EMC problem
    Ferrieres, X
    Parmantier, JP
    Bertuol, S
    Ruddle, AR
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2004, 46 (04) : 624 - 634