New solution bounds for the continuous algebraic Riccati equation
被引:22
|
作者:
Liu, Jianzhou
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Dept Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Dept Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Liu, Jianzhou
[1
]
Zhang, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Xiangtan Univ, Dept Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R ChinaXiangtan Univ, Dept Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Zhang, Juan
[1
]
Liu, Yu
论文数: 0引用数: 0
h-index: 0
机构:
Hanshan Normal Univ, Dept Math Sci & Informat Technol, Chaozhou 521041, Guangdong, Peoples R ChinaXiangtan Univ, Dept Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
Liu, Yu
[2
]
机构:
[1] Xiangtan Univ, Dept Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] Hanshan Normal Univ, Dept Math Sci & Informat Technol, Chaozhou 521041, Guangdong, Peoples R China
In this paper, by constructing the equivalent form of the continuous algebraic Riccati equation and utilizing the eigenvalue and singular value inequalities of matrix's sum and product, we propose new lower and upper matrix bounds for the solution of the continuous algebraic Riccati equation. Finally, we give corresponding numerical examples to illustrate the effectiveness of our results. (C) 2011 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.