INCREMENTAL SHAPE LEARNING OF 3D SURFACES OF THE KNEE, DATA FROM THE OSTEOARTHRITIS INITIATIVE

被引:0
|
作者
Neubert, Ales [1 ,2 ]
Naser, Ibrahim [2 ]
Paproki, Anthony [1 ,2 ]
Engstrom, Craig [3 ]
Fripp, Jurgen [1 ]
Crozier, Stuart [2 ]
Chandra, Shekhar S. [2 ]
机构
[1] CSIRO Hlth & Biosecur, Australian E Hlth Res Ctr, Canberra, ACT, Australia
[2] Univ Queensland, Sch Informat Technol & Elect Engn, Brisbane, Qld 4072, Australia
[3] Univ Queensland, Sch Human Movement Studies, Brisbane, Qld 4072, Australia
关键词
Incremental subspace learning; statistical shape modeling; MRI; knee; big data; SEGMENTATION; MODELS;
D O I
10.1109/ISBI.2016.7493406
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Traditional shape learning of medical image data has been implemented via Principal Component Analysis (PCA). These PCA based statistical shape models batch process all shapes at once to generate a fixed model of shape variation as principal components, which may require significant computation resources for large number of shapes. This paper applies incremental PCA (IPCA) on a dataset of 728 surfaces (derived from magnetic resonance imaging examinations displaying the articulating bones of the knee joint) that can efficiently adapt to changes in training sets. After comparing the compactness and the accuracy of shape reconstruction of both batch PCA and IPCA models, our results show that IPCA produces a model comparable to batch PCA in terms of compactness and applicability to shape reconstruction, while requiring considerably shorter processing time and computer memory for computation.
引用
收藏
页码:881 / 884
页数:4
相关论文
共 50 条
  • [21] Learning From Highly Confident Samples for Automatic Knee Osteoarthritis Severity Assessment: Data From the Osteoarthritis Initiative
    Wang, Yifan
    Bi, Zhaori
    Xie, Yuxue
    Wu, Tao
    Zeng, Xuan
    Chen, Shuang
    Zhou, Dian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (03) : 1239 - 1250
  • [22] Disease Severity and Knee Extensor Force in Knee Osteoarthritis: Data From the Osteoarthritis Initiative
    Berger, Michael J.
    Kean, Crystal O.
    Goela, Aashish
    Doherty, Timothy J.
    ARTHRITIS CARE & RESEARCH, 2012, 64 (05) : 729 - 734
  • [23] KNEE INJURIES ARE ASSOCIATED WITH THE ONSET OF RAPID KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Driban, J. B.
    Eaton, C. B.
    Lo, G. H.
    Barbe, M. F.
    Ward, R. J.
    Lu, B.
    McAlindon, T. E.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 : S32 - S33
  • [24] The relationship between clinical characteristics, radiographic osteoarthritis and 3D bone area: data from the Osteoarthritis Initiative
    Barr, A. J.
    Dube, B.
    Hensor, E. M. A.
    Kingsbury, S. R.
    Peat, G.
    Bowes, M. A.
    Conaghan, P. G.
    OSTEOARTHRITIS AND CARTILAGE, 2014, 22 (10) : 1703 - 1709
  • [25] Stratifying knee osteoarthritis features through multitask deep hybrid learning: Data from the osteoarthritis initiative
    Teoh, Yun Xin
    Othmani, Alice
    Lai, Khin Wee
    Goh, Siew Li
    Usman, Juliana
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 242
  • [26] Dietary Patterns and Progression of Knee Osteoarthritis: Data from the Osteoarthritis Initiative
    Xu, Chang
    Marchand, Nathalie E.
    Driban, Jeffrey B.
    McAlindon, Timothy
    Eaton, Charles B.
    Lu, Bing
    AMERICAN JOURNAL OF CLINICAL NUTRITION, 2020, 111 (03): : 667 - 676
  • [27] IDENTIFICATION OF CLINICAL PHENOTYPES IN KNEE OSTEOARTHRITIS: DATA FROM THE OSTEOARTHRITIS INITIATIVE
    Knoop, J.
    van der Leeden, M.
    Thorstensson, C.
    Roorda, L.
    Lems, W. F.
    Knol, D.
    Steultjens, M.
    Dekker, J.
    OSTEOARTHRITIS AND CARTILAGE, 2011, 19 : S130 - S131
  • [28] The Association of Knee Shape with Sex: The Osteoarthritis Initiative
    Wise, Barton L.
    Kritikos, Lisa
    Liu, Felix
    Parimi, Neeta
    Lynch, John A.
    Zhang, Yuqing
    Lane, Nancy E.
    ARTHRITIS & RHEUMATOLOGY, 2014, 66 : S791 - S792
  • [29] Semantic Segmentation of 3D Medical Images Through a Kaleidoscope: Data from the Osteoarthritis Initiative
    Woo, Boyeong
    Lorenzanal, Marlon Bran
    Engstrom, Craig
    Baresic, William
    Fripp, Jurgen
    Crozier, Stuart
    Chandra, Shekhar S.
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 905 - 917
  • [30] An analysis of 3D knee kinematic data complexity in knee osteoarthritis and asymptomatic controls
    Mezghani, Neila
    Mechmeche, Imene
    Mitiche, Amar
    Ouakrim, Youssef
    de Guise, Jacques A.
    PLOS ONE, 2018, 13 (10):